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NeuroMechFly v2: simulating embodied 
sensorimotor control in adult Drosophila

Sibo Wang-Chen    1  , Victor Alfred Stimpfling    1, Thomas Ka Chung Lam    1, 
Pembe Gizem Özdil    1,2, Louise Genoud1, Femke Hurtak    1 & 
Pavan Ramdya    1 

Discovering principles underlying the control of animal behavior requires 
a tight dialogue between experiments and neuromechanical models. 
Such models have primarily been used to investigate motor control with 
less emphasis on how the brain and motor systems work together during 
hierarchical sensorimotor control. NeuroMechFly v2 expands Drosophila 
neuromechanical modeling by enabling vision, olfaction, ascending 
motor feedback and complex terrains that can be navigated using leg 
adhesion. We illustrate its capabilities by constructing biologically inspired 
controllers that use ascending feedback to perform path integration and 
head stabilization. After adding vision and olfaction, we train a controller 
using reinforcement learning to perform a multimodal navigation task. 
Finally, we illustrate more bio-realistic modeling involving complex odor 
plume navigation, and fly–fly following using a connectome-constrained 
visual network. NeuroMechFly can be used to accelerate the discovery 
of explanatory models of the nervous system and to develop machine 
learning-based controllers for autonomous artificial agents and robots.

How the nervous system controls behavior is a deeply entangled 
problem: nested feedback loops occur at multiple levels including 
the physiology of individual neurons, the recurrent dynamics of neural 
circuits, biomechanical interactions with the environment and sensory 
signals resulting from one’s own actions. Therefore, investigating and 
modeling any of these elements in isolation, although useful, will always 
be fundamentally incomplete. To overcome this gap, neuroscience 
requires simulation frameworks that enable the exploration of hier-
archical feedback loops in an end-to-end manner. Numerous detailed 
neuromechanical models have been developed to explore how animals 
control motor programs like walking1,2, swimming3 and transitions 
between them4. As well, in the field of reinforcement learning more 
abstract and simplified ‘creatures’5 have been widely used to model 
visuomotor coordination6, decision-making7 and learning algorithms8. 
These latter models often lack realistic motor control and biomechan-
ics and, as a consequence, typically generate only simplified control 
signals that drive unrealistically limited categorical variables or joint 
degrees of freedom (DoFs)9. Thus, although progress is being made10–15, 

a substantial gap remains at the interface between machine learn-
ing models and morphologically realistic neuromechanical models  
of most animals. An ideal model would enable the exploration of hier-
archical controllers16—like those found in biological agents—which 
include higher-order brain-like systems that integrate multimodal 
sensory inputs, ascending motor feedback and internal states as well 
as lower-level motor systems that decode descending brain commands 
and execute behaviors (Fig. 1a).

The adult fruit fly, Drosophila melanogaster, is an ideal animal for 
comprehensively modeling hierarchical control. It has only ~200,000 
neurons in its brain17 (about 103–106 times smaller than the mouse and 
human brains); its principal motor system (the ventral nerve cord or 
VNC) has only ~15,000 neurons18 (about 102–104 times smaller than the 
mouse and human spinal cords). Using this small number of neurons, 
flies can nevertheless generate complex behaviors. They can walk over 
complex terrain19, make rapid corrective maneuvers during flight20, 
execute courtship sequences21, fight off competitors22 and learn23. The 
organization of the fly’s nervous system resembles that of vertebrates, 
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models that solve a multimodal task—visually avoiding an obstacle 
to reach an attractive odor source over rugged terrain. We show how 
this artificial neural network controller can be trained using rein-
forcement learning. Finally, we illustrate more biological realism by 
modeling a Drosophila odor-taxis strategy to navigate a complex odor 
plume and by using a connectome-constrained visual system network 
to perform fly–fly following. The modularity of NeuroMechFly v2 
allows users to flexibly interact with the simulation at multiple levels 
of abstraction and facilitates its widespread adoption for research 
and education. Our implementation’s compliance with a standard 
reinforcement learning task interface can also facilitate a dialogue 
between neuroscience, machine learning and robotics (Fig. 1c and 
Supplementary Note 1).

Results
The FlyGym package: a standardized simulation framework
To improve the usability of the NeuroMechFly simulation framework 
(released as the FlyGym Python package; https://neuromechfly.org/), 
we made three fundamental changes. First, the package fully complies 
with Gymnasium5, a standard interface for controller–environment 
interaction in robotics and reinforcement learning (Fig. 1c). Second, 
we moved the simulation framework from PyBullet to MuJoCo33, a more 
intensively maintained and widely used physics simulator. MuJoCo is 
known for better stability and performance34 and supports a wider 
range of actuators including those for leg adhesion. It was made  
an open-source tool after NeuroMechFly v1 was published. Third, to 
facilitate implementing custom environmental features within the 
simulation, we expanded the interface for the fly model’s arena.

yet it has been completely mapped in connectomes (that is, wiring dia-
grams) of the brain24 and VNC25,26. Additionally, thousands of transgenic 
fly lines enable the repeated targeting of sparse sets of neurons27 for 
optical activation28, silencing29 and recordings30. These resources and 
tools have led to the development of connectome-constrained models 
of neural circuits31,32. However, we still lack an integrative simulation 
framework of the fly, embedded in a physics simulator, to embody and 
explore these models to identify the principles governing biological 
intelligence and autonomous behavioral control.

Toward this goal, we previously developed NeuroMechFly, a mor-
phologically realistic model of the adult fly13. With its biomechanical 
hull, we could infer unmeasured forces and collisions during the simu-
lated replay of recorded limb kinematics from walking and grooming 
flies. Furthermore, we could optimize simple coupled oscillators to 
control fast and stable tethered walking. Although foundational, this 
previous simulation framework could not fully model hierarchical 
sensorimotor control: complex environments, brain-level sensory 
processing and the physics and biomechanics required for untethered 
behavioral control were lacking. Here we describe NeuroMechFly v2, 
a simulation framework that addresses these gaps by (i) improving 
biomechanics and stepping, (ii) adding leg adhesion, (iii) simulating 
visual and olfactory sensing, and (iv) enriching the fly’s environment 
with rugged terrain, obstacles and sensory objects including other 
flies (Fig. 1a,b). We illustrate the exploration of locomotor control 
over rugged terrain, simple visual object tracking and simple odor 
taxis. Next, we demonstrate the use of ascending limb motor signals 
to perform path integration and head stabilization. Then, we combine 
these elements to build integrated hierarchical machine learning 

a

Vision Olfaction

Sensory processing 
and action selection

Descending and
ascending signals

Motor system

Biom
echanical

system

Leg adhesion

b
Visual feature

(obstacle) Odor
source

Rugged terrain

1 mm

c

Complex sensory objects

Rugged terrain

Original model

Controller
(nervous system)

Embodiment

Environment

Neuromechanical
model

v2 updates

Premotor
computation
(e.g., CPGs)

Sensory
preprocessing

(e.g., vision, olfaction,
mechanosensing)

Action
(e.g., descending drive)

Observation
(preprocessed

sensory features)

Task
(predefined assumptions)

Interface
(input/output)

Fig. 1 | Schematic overview of the NeuroMechFly v2 modeling framework.  
a, Diagram highlighting the integrative and hierarchical aspects of the expanded 
NeuroMechFly framework. Sensory inputs—visual and olfactory—are processed 
by the brain to select an appropriate action. Instructions to execute the selected 
action are then communicated to the lower-level motor centers (VNC) through 
descending signals. The VNC executes the motor program via joint actions and 
mechanosensory feedback signals are sent back to the motor system to inform 
the next movement and to the brain via ascending pathways. Indicated are 
components that were present in the original model but improved (brown, in 
shaded box) as well as new elements (blue, outside shaded box). b, Simulation 

camera view of the neuromechanical model, NeuroMechFly, walking over 
complex terrain, using vision to avoid a pillar, and using olfaction to reach an 
attractive odor source (orange). c, The biomechanical model and its interaction 
with the environment are encapsulated as a POMDP task. A user-defined 
controller interfaces with the task through actions (red) and observations 
(dark blue). The user can extend the POMDP task by adding preprogrammed 
processing routines for sensory inputs (light blue) and premotor outputs 
(magenta), to modify the action and observation spaces handled by the 
controller.
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In NeuroMechFly v2, we clarify the framing of the control problem 
as a partially observable Markov decision process (POMDP). At each 
time step, the simulation provides the controller with an observation 
and, optionally, a user-defined reward. Then, the simulation receives an 
action from the controller and steps the physics forward accordingly. 
The observation space is a user-configurable subset of the state space 
including visual input, olfactory input, ground contacts, joint states 
(angles, angular velocities and torques) and the states (for example, 
position, orientation) of potentially multiple fly models in the arena. 
The action space includes the control signals (for example, target 
angles) for each actuated DoF and the on/off signal for leg adhesion. 
Users can easily extend this framework by incorporating additional 
sensory or premotor processing into the Markov decision process 
(Fig. 1c). For example, in a visual taxis example described below, we 
programmed the centroid calculation to reduce the observation space 
to fewer dimensions (such as the azimuth of the object seen from 
each eye) and used a network of central coupled oscillators to reduce 
the action space to a two-dimensional descending command. This 
increased flexibility and usability allows one to rapidly adapt the simu-
lation to their own research question.

Improved morphological accuracy and kinematic realism
A promise of biomechanical models such as NeuroMechFly is to allow 
researchers studying body movements to, for example, infer unmeas-
ured collisions, contacts and forces during the replay of real recorded 
body-part kinematics13. However, doing so at a high precision is only 
possible with a morphologically realistically rigged body model. In 
particular, modeling behaviors that depend on self-contact (such as 
grooming) requires precise kinematic replay to read out where and 
how individual body parts interact with one another. Therefore, we 
improved the morphological accuracy and granularity of several 
body-part meshes. First, we adjusted the placement and default angles 
of joints between the thorax and front leg coxae as well as between the 
thorax and head (Extended Data Fig. 1a,b). These adjustments were 
made based on high-magnification video data. Second, to better facili-
tate control of the antennae and readout of their mechanosensory 
signals, we split their meshes into three segments: pedicel, funiculus 
and arista. We added DoFs between these segments, allowing each to 
be separately actuated or passively moved and its angular displacement 
to be measured (Extended Data Fig. 1c). We note that users can simplify 
body geometries if morphological accuracy is of less importance than 
computational speed.

We also improved the realism of limb kinematics during walking. 
Leg kinematics in NeuroMechFly v1 (ref. 13) were based on data from 
tethered flies walking on a spherical treadmill. In our simulation these 
kinematics appeared unnatural during untethered walking, turning and 
locomotion over rugged terrain. Therefore, to obtain realistic unteth-
ered three-dimensional (3D) leg kinematics, we designed a system 
to record three views of a fly walking straight through a corridor. We 
annotated and triangulated key points from these data and extracted 
individual steps. For each pair of legs, we segmented and processed a 
step while enforcing symmetry, closure and equal lengths (Extended 
Data Fig. 2 and Supplementary Video 1). Replaying and looping these 
steps in NeuroMechFly (Supplementary Video 2) drove straight walking 
more closely resembling that of a real fly.

Leg tip adhesion enables locomotion in three dimensions
Insects, including flies, use highly specialized adhesive structures 
to walk over complex 3D terrain with ease. These include adhesive 
pads with substantial normal forces (>100 times body weight) and 
frictional forces35. Adhesion provides mechanical coupling between 
the legs during locomotion and improves force transduction with 
the ground. We cannot easily model the physics of real adhesion. 
Therefore, we modeled leg adhesion as an additional normal force 
when a leg tip (that is, pretarsus) is in contact with the surface (Fig. 2a 

and Supplementary Video 3). As for insects35, this normal force also 
increases the frictional forces. Despite the huge forces generated by 
adhesive pads, insects appear to be able to lift their legs without much 
effort. Although liftoff mechanisms are known for some insects36,37, 
they are not known for D. melanogaster. Therefore, we abstracted the 
mechanisms used by other insects and lifted the legs during walking 
by turning off adhesion forces during the swing phase. To illustrate 
how leg adhesion expands the behavioral repertoire of our model, 
we simulated tripod-gait walking38,39 over terrain with up to 180° of 
inclination (Fig. 2b and Supplementary Video 4). Without adhesion, 
the fly slipped at as low as 30° inclination. By contrast, with adhesion 
the fly could locomote over terrain with sometimes more than >90° of 
inclination (Fig. 2c). We expect experimental recordings of real inverted 
walking kinematics to enable the simulation of locomotion at even 
higher inclinations.

Complex terrains demonstrate the use of locomotor feedback
A variety of mechanisms have been proposed for insect locomotion 
ranging across a spectrum from those depending purely on central 
pattern generators (CPGs, namely circuits in the central nervous sys-
tem that produce rhythmic motor output without rhythmic input40) 
to those relying on sensory feedback-based rules1. Evidence for each 
of these control strategies has been found across species, motivating 
their application in robotics40–42. Although walking over flat terrain can 
be solved using a variety of feedback-independent control strategies, 
leg mechanosensory signals are thought to be required to navigate 
rugged terrain. To demonstrate that NeuroMechFly can serve as a test 
bed to evaluate different control strategies in complex environments, 
we developed three rugged terrain types to compare with smooth 
terrain: one with gaps perpendicular to the initial heading of the fly, 
one with blocks of alternating height and one that is a mixture of the 
previous two (Fig. 2d).

We next built controllers and benchmarked them over flat 
and rugged terrains. The control strategies tested include purely 
CPG-based (Fig. 2e and Supplementary Video 5), purely sensory feed-
back rule-based (Fig. 2e and Supplementary Video 6) or intermediate 
to these two, with CPGs but also sensory feedback rules to recover 
from challenging positions (Fig. 2e and Supplementary Video 7). At 
baseline (that is, on flat terrain), CPG and hybrid controllers were 
fastest (Fig. 2f). However, on rugged terrain the CPG-based control-
ler struggled compared with the rule-based controller (Fig. 2f). The 
hybrid controller leveraging both CPGs and sensory feedback rules 
overcame this trade-off: it remained fast over rugged terrain (Fig. 2f) 
(Supplementary Video 8) while still being able to overcome obsta-
cles. These results demonstrate the importance of rugged terrains in 
studying locomotor control: they expose the failure modes of con-
trollers that otherwise work on flat terrain. Hereon, for our more 
complex sensorimotor tasks, we use the hybrid controller driven by 
a two-dimensional descending signal to control walking speed and 
turning by modulating oscillator frequencies and amplitude asym-
metries, respectively (Fig. 2g).

Vision and olfaction enable sensory navigation
To reach attractive objects (for example, potential mates, or food 
sources), avert from repulsive features (for example, pheromones 
from predators) and avoid obstacles, animals use hierarchical control-
lers: higher-order brain systems must process sensory signals, use 
them to select the next course of action, and then transmit directives 
via descending pathways to lower-level motor systems. To simulate 
this sensorimotor hierarchy, we next added vision and olfaction to 
NeuroMechFly (Fig. 3a).

A fly’s compound eye consists of ~700–750 individual units called 
ommatidia that are arranged in a hexagonal pattern43. We emulated 
this by attaching a color camera to each of our model’s compound eyes 
(Fig. 3a) and then transformed each camera image into 721 bins on a 

http://www.nature.com/naturemethods
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hexagonal grid31 (Fig. 3b). We assumed a 270° combined azimuth for the 
fly’s field of view, with a ~17° binocular overlap (Extended Data Fig. 3). As 
an initial step toward enabling heterogeneous color sensitivity in our 
model, we implemented yellow-type and pale-type ommatidia—sensitive 

to the green and blue channels of images rendered by the physics simu-
lator. Users can substitute the green and blue-channel values with the 
desired light intensities sensed by yellow-type and pale-type ommatidia 
to achieve more bio-realistic chromatic vision.
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Fig. 2 | Locomotion in three dimensions and over rugged terrains. a, A schematic 
of contact forces on the fly’s leg with the addition of adhesion. b, Trajectory 
(blue) of the fly as it walks up a vertical wall. The legs are controlled by a CPG 
controller with adhesion enabled (F = 40 mN). c, Critical slope (angle) at which 
the fly falls or does not proceed forward at different magnitudes of leg adhesion 
force. d, Terrains for exploring the efficacy of distinct locomotor strategies.  
We tested four terrains: a flat surface, a surface with gaps, a surface with blocks 
and a mixture of all surface types. e, Three controllers tested across terrains:  
a controller with six coupled CPGs controlling the swing and stance of the legs,  
a rule-based controller in which the phase of one leg’s movements influences the 
movements of neighboring legs, and a hybrid controller consisting of coupled 
CPGs with sensory feedback-based corrective mechanisms that execute stepping 

phase-dependent adjustments when the leg might be stuck. In all cases, leg 
adhesion is present. f, The performance (average speed) of each locomotor 
controller while walking over four types of terrain. Shown as dots are N = 20 
trials, each with a random spawn location and controller initialization. Overlaid 
are box plots indicating the median, upper and lower quartiles and whiskers 
extending to the furthest points excluding outliers that are more than 1.5 times 
the interquartile range (IQR) beyond the IQR. A one-sided, asymptotic Mann–
Whitney U test was used to generate the statistics: NS, not significant; **P < 0.01, 
***P < 0.001 (see Supplementary Table 1 for complete statistics). g, Turning is 
controlled by the asymmetric modulation of a two-dimensional descending 
command signal that regulates the directions and amplitudes of oscillators on 
each side of the body.
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In addition to vision, we also made it possible for our model to 
detect odors in the simulation environment. Flies have olfactory recep-
tor neurons (ORNs) in their antennae and maxillary palps. ORNs detect 
specific odorant molecules and convey this information to the brain’s 
antennal lobe, where it is further processed44. We emulated olfaction by 
attaching virtual odor sensors to our model’s antennae and maxillary 
palps (Fig. 3a). These virtual sensors can detect odor intensities across a 
multidimensional space that can be thought as representing, for exam-
ple, the concentrations of monomolecular chemicals sensed by ORNs, 
or the intensities of composite odors co-activating numerous projec-
tion neurons in the antennal lobe. The modularity of our framework 
makes it possible for users to add more sensors to specific head loca-
tions and to implement additional signal processing by downstream 
olfactory centers (for example, lateral horn or mushroom body45).

To illustrate the use of visual and olfactory sensing, we imple-
mented visual object tracking and olfactory chemotaxis. In our object 
tracking task, the fly model had to visually track and follow a black 
sphere moving along an S-shaped trajectory in the environment. The 
controller processed the object’s visual location by computing its 
centroid position on the retina. Then, these visual features were lin-
early transformed into a two-dimensional descending signal (Fig. 3c) 
that modulated the frequencies and amplitudes of CPG-based oscil-
lators on each side of the body (Fig. 2g). This strategy allowed the fly 
to effectively track the sphere (Fig. 3c and Supplementary Video 9). In 
our odor-seeking task, the simulated fly had to reach an attractive odor 
source while avoiding two aversive odor sources. The controller used 
sensors on the antennae and maxillary palps to compare the relative 
intensities of attractive and aversive odors across the left and right 
sides of the head46. These intensity values were multiplied by weights 
of opposite signs for attractive-versus-aversive odors. This left–right 
bias was used to asymmetrically control the descending signal (Fig. 3d), 
yielding effective odor-based navigation through the environment 
(Fig. 3d and Supplementary Video 10).

Ascending signals for path integration and head stabilization
Thus far, we have demonstrated how brain-level sensory processing can 
drive the motor system via descending control. The inverse, ascend-
ing signals are thought to convey information back to the brain for 
action selection, motor planning and sensory contextualization47. 
We next investigated how ascending feedback enables the modeling 
of important behaviors like path integration and head stabilization.

To effectively navigate the world, many animals, including flies48, 
perform path integration wherein they constantly estimate and keep 
track of their own heading and distance traveled (‘odometry’). The 
source of these idiothetic cues for path integration is unknown but 
may, in principle, be derived from ascending leg proprioceptive and 
tactile signals. We next explored how ascending proprioceptive and 
tactile feedback might be used to inform the brain of the change in body 
orientation and displacement. For each leg, we accumulated stride 
lengths by computing the forward translation of the leg tip relative 
to the thorax when the leg was in contact with the ground. Then, we 
computed the differences and sums of the left and right total stride 
lengths for each pair of legs within a short time window. These left–right 
differences and sums were used to predict the change in heading and 
forward displacement, respectively (Fig. 4a). Despite being linear, our 
model could give accurate predictions of the change in heading and 
forward displacement (Fig. 4b). These signals could be integrated over 
time to accurately estimate the fly’s true two-dimensional position 
(Fig. 4c). We note, however, that the heading of the fly could sometimes 
be wrongly estimated (Extended Data Fig. 4) in rare instances when 
the heading change prediction was off by a large margin. Thus, posi-
tion estimates based on idiothetic cues alone can be prone to errors 
in heading integration even with an exceptionally well-performing 
internal model (r2 = 0.96; Fig. 4b). This suggests that calibration using 
external sensory (for example, visual) cues may be crucial.

In addition to informing path integration, ascending signals 
are well poised to perform other important tasks including visually 
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tracking landmarks or targets (for example, potential mates) while 
navigating over rugged terrain. In this context head stabilization may 
be controlled using leg sensory feedback signals49 to compensate for 
body pitch and roll50. To explore this possibility in our embodied model, 
we designed a controller in which leg joint angles (that is, propriocep-
tive signals) and ground contacts (that is, tactile signals) were fed into 

a multilayer perceptron (MLP). This MLP was trained to predict the 
appropriate neck joint actuation (that is, head roll and pitch) required 
to cancel visual rotations caused by the animal’s own body movements 
during locomotion (using the hybrid controller) over either flat or 
blocks terrain (Fig. 4d). These predictions made from mechanosensory 
signals could indeed be used to dampen head movements in the roll 
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stabilization. Note that without head stabilization the head and the thorax are 
coupled. f, The standard deviation of ommatidia readings from the left eye 
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and pitch axes compared to thoracic movements (Fig. 4e) in a manner 
reminiscent of data from blowflies50. As a result, visual inputs, especially 
near the horizon, were more stable (that is, exhibiting less variance 
in light intensity when walking in a featureless environment; Fig. 4f, 
Extended Data Fig. 5a,b and Supplementary Video 11). Restricting the 
number and kinds of leg proprioceptive inputs to the MLP shows that 
ascending feedback concerning multiple DoFs appears to be neces-
sary to estimate body orientation for head stabilization (Extended 
Data Fig. 5c,d).

Hierarchical controller trained with reinforcement learning
With the elements of a hierarchical controller in place, it becomes possi-
ble to leverage modern machine learning approaches to train a network 
to accomplish more complex tasks. To illustrate this, we trained our 
fly model to avoid an obstacle while searching for an attractive odor 
source over rugged terrain. In total, our hierarchical controller16 (Fig. 5a) 
consisted of: (i) a vision module (a convolutional neural network on a 
hexagonal lattice) that extracts the object’s direction, distance, loca-
tions and sizes on the retinas (Extended Data Fig. 6); (ii) a decision 
module (an MLP) that receives as inputs preprocessed visual features 
and odor intensities from each antenna and computes a turning bias; 

(iii) a two-dimensional descending signal that modulates locomotor 
CPGs that drive walking and turning; (iv) a hybrid walking controller 
(Fig. 2g); and (v) an ascending feedback module that performs head 
stabilization. We trained the vision module in a supervised manner by 
randomly placing the fly and obstacle in the arena to collect training 
data and trained the decision module through reinforcement learning. 
This hierarchical controller could achieve multimodal visual–olfactory 
navigation over rugged terrains (Fig. 5b,c and Supplementary Video 12).  
This integrative task demonstrates how one can define individual 
components in a modular fashion and combine them to investigate a 
hierarchical sensorimotor task in closed loop using NeuroMechFly v2.

Using more bio-realistic algorithms for sensorimotor control
With full access to raw light intensities and odor concentrations, users 
can build their own sensory-rich environments and process these with 
models of even higher levels of biological realism. We first illustrate 
this by using a Drosophila olfactory taxis algorithm to navigate a com-
plex odor plume. We simulated a plume embedded in airflow (Fig. 6a) 
representing the propagation of, for example, an attractive food odor 
in the real world. Unlike the simplified controller used in Fig. 3d, here 
we implemented a previously proposed Drosophila plume navigation 
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algorithm51 to control locomotion. Using this algorithm, to reach the 
odor source, the fly randomly switches between forward walking, 
pausing and turning (Fig. 6b). These actions are governed by Poisson 
processes, with Poisson rates and turning direction bias modulated 
based on odor encounters to favor navigation toward the target. In 
our simulation, the fly successfully reached within 15 mm of the odor 
source (Fig. 6c and Supplementary Video 13) with a low (9 of 100 trials), 
albeit similar, success rate comparable to what was seen in real flies in 
a larger arena over a longer time period51.

Ultimately, to gain insights into how the real fly brain works, one 
would explore controllers with artificial neurons that can be mapped 
to real neurons or neuronal cell types. This may be achieved by build-
ing artificial neural networks with architectures constrained by the 
connectivity of the brain24 and the VNC25,26. To illustrate how such 

models might be embodied and studied in the context of autonomous 
behavior, we designed a ‘fly following’ task in which a fly must use a 
realistic visual system model (Fig. 6d) to follow another fly—akin to 
chasing behaviors during courtship. We used a recently constructed 
connectome-constrained model31 for this task. We interfaced Neuro-
MechFly with this visual system model to emulate layered visual pro-
cessing in the fly brain. Concretely, we passed the visual experience of 
the ‘following’ fly as inputs to this pretrained connectome-constrained 
model and used the activities of T1–T5, all Tm neurons and all TmY 
neurons (indicated as putative output cells types31) to perform object 
detection (Fig. 6f). Then, based on the position of the detected object, 
we modulated the descending turning signal (Fig. 6g) to drive the 
hybrid controller (Fig. 2g), which controls walking. We asked to what 
extent ascending feedback-driven head stabilization (Fig. 4d) is 
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e, Block diagram of the Drosophila optic lobe. Indicated in blue and green are 
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necessary to enable reliable fly following. We found that, although 
over flat terrain the ‘following’ fly could successfully track the ‘lead-
ing’ fly without head stabilization (Extended Data Fig. 7), stabilization 
was crucial for tracking over rugged terrain (Fig. 6h and Supplemen-
tary Video 14). We obtained similar results even when using a smaller 
subset of neurons that provide inputs to LC9 and LC10–LC neurons 
implicated in courtship in particular52 (Extended Data Fig. 7b). These 
results highlight how realistic neural networks can be coupled with 
embodied models to close the sensorimotor control loop.

Discussion
Here we have introduced NeuroMechFly v2, a framework for perform-
ing integrated sensorimotor neuromechanical simulations of the adult 
fly, D. melanogaster. In Supplementary Note 1, we provide a summary 
of general features currently supported in NeuroMechFly v2, specific 
modeling choices concretely demonstrated in this paper and opportu-
nities for future work. Because our simulation framework is modular, 
researchers can build integrated models in an interoperable manner by 
choosing the appropriate level of detail for each part of the model to suit 
the scientific question under consideration. For example, one can use 
more abstract baselines or existing models for control elements outside 
the focus of investigation. Although important behaviors like those 
involving the control of wings/halteres (for example, flight14), abdo-
men (for example, egg laying) and proboscis (for example, feeding) 
are not yet implemented, they are supported within this framework. 
With enriched sensory feedback and improved biomechanics, Neuro-
MechFly v2 enables the whole-body simulation of complex behaviors 
requiring controllers that span sensing, navigation, internal states22, 
learning45 and motor control.

In the future, our simulation framework is likely to be further 
improved in a number of ways. First, we anticipate that recent devel-
opments in physics simulation, particularly GPU acceleration and 
differentiable simulation will facilitate the training of larger models 
through reinforcement learning. Second, careful measurements and 
analyses of the Drosophila musculoskeletal system (that is, tendons 
and muscles) could improve the interface between neural network 
controllers and the biomechanical embodiment. Third, as additional 
connectome-constrained neural circuit models become available, 
they can be added to the corpus of controllers in our modular simu-
lation framework. FlyGym’s compatibility with the Gymnasium API 
will ensure that changes are implemented relatively easily without 
disrupting the established user interface. In the more distant future—
following substantial improvements in modeling infrastructure 
enabling high-throughput, low-latency simulations—a similar simu-
lation framework could be integrated into closed-loop experiments.  
For example, NeuroMechFly could be used during experiments  
to replay an animal’s kinematics as captured by pose estimation  
methods, enabling the real-time inference of dynamic variables  
such as contacts and informing experimental perturbations in  
closed loop53. These efforts will bring the field closer to achieving 
the ultimate goal of uncovering neuromechanical mechanisms  
giving rise to adaptive animal behaviors in a sensory-rich and physi-
cally complex world.
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Methods
The FlyGym package
FlyGym is implemented based on MuJoCo33 and the dm_control54 library 
and complies with the Gymnasium API5 for the Markov decision pro-
cess. The user interacts with the simulation through ‘actions’ and 
‘observations’ (Fig. 1 and Supplementary Note 2). The definition of 
the action and observations in the default control task can be found 
in Supplementary Note 3. More detailed, low-level information can be 
accessed directly using dm_control and MuJoCo.

We configured the meshes at 1,000× scale in MuJoCo to obtain 
observation measurements in mm and mN. The user can implement 
preprogrammed premotor computations and sensory preprocessing 
by extending the base Fly or Simulation classes (Fig. 1c). This will 
modify the action and observation spaces accordingly.

If the user wishes to use a simplified, ball-and-stick model to speed 
up computation, one can use a MuJoCo feature that approximates 
body geometries as ‘capsules’ (that is, cylinders with a hemisphere 
at each end). To do so, the user should replace type = "mesh" with 
type = "capsule" in the <geom> tag of the model MJCF file.

Updated rigging of the biomechanical model
In Drosophila, the antenna consists of three main segments—the 
scape, pedicel and funiculus—in addition to the arista55. The fly has 
four muscles that can actively control the joint between the scape and 
pedicel56. By contrast, the funiculus and the arista move or deform 
passively in response to external forces (for example, wind, limb 
contact during grooming). In the original NeuroMechFly model, 
the entire antenna could move relative to the head with one DoF. We 
improved the model by separating each antennal mesh into three 
different meshes using Blender. In the biomechanical model, ‘bones’ 
determine how objects move with respect to one another. We posi-
tioned the bones to accurately replace joints based on anatomical 
features such as the stalk-like structures connecting the funiculus 
to the pedicel57. We then constructed a kinematic chain connecting 
these segments: scape–pedicel–funiculus–arista from proximal to 
distal. Instead of simulating the arista as a soft body (which is com-
putationally expensive), we emulated the compliance of the arista by 
adding three DoFs between the funiculus and the arista. The passive 
movement of the arista can be fine-tuned by modifying the stiffness 
and damping coefficients of these DoFs. We gave the remaining joints 
(that is, head–pedicel and pedicel–funiculus) all three rotational DoFs 
because the real number of DoFs in these antennal joints remains 
unknown. Future users can modify each DoF (for example, fix/unfix 
or stiffen) in the model file to emulate the measured dynamics of 
the antennae.

The position of the neck joint affects the translation of segments 
on the head, such as the proboscis, antennae and eyes. The neck is 
located ventral to the hair plate behind the head. In our previous 
model, the neck had one unactuated pitch DoF. Here we modified 
the location of the neck joint by comparing the head rotations of the 
model with those of the real fly and added two known DoFs (yaw and 
roll) to the neck. Furthermore, we spaced the head away from the 
thorax to emulate the space filled by the neck. The size of the neck 
was determined by measuring the proportion of head size to neck 
size in real animals58. We confirmed that the rotation center of the 
neck joint fits the original pose from the NeuroMechFly CT scan by 
actuating the neck joint to match the original pose. Next, we adjusted 
the positions of the front legs based on the distance between the front 
leg thorax–coxa position and anatomical landmarks (for example, 
humeral bristles) and an overlay of camera images of real animals 
with images of the model. Finally, we changed the resting pose of 
the model such that the angle of the scutellum would resemble that 
of real animals standing freely (untethered) on flat terrain. We used 
the FARMS simulation framework59 to generate the MJCF file of the 
updated model.

Leg adhesion and critical climbing angle
Leg adhesion was added using built-in MuJoCo actuators. Adhesion 
takes the form of an artificial force injected perpendicular to the con-
tact surface at the point of contact. This force is oriented toward the 
object colliding with the body part containing the actuator. If multiple 
contacts occur with external objects and the adhesion actuated body, 
the force is equally divided between these contact points.

In our model, adhesion is actuated and can be turned on and off 
during locomotion. We manually defined the adhesion on/off periods 
within the preprogrammed stepping pattern (Extended Data Fig. 2). 
Adhesion is on during the stance phase and off during the swing phase 
(‘Stepping pattern’). We controlled adhesion in a binary fashion but it is 
possible to use a gradient of adhesion forces by modulating the input 
to the adhesion actuator at every time step.

To quantify the impact of maximal adhesive force on the ability 
of the fly model to climb (Fig. 2c), we measured the critical slope—the 
angle in degrees at which the fly could no longer maintain forward 
locomotion, or flipped—as a function of the maximal adhesion force. 
Flipping is defined as when either the absolute roll or pitch angle of 
the fly is above π/2. A fly has failed to maintain forward locomotion if 
its position along the surface is negative compared to its initial posi-
tion after 1 s.

Stepping pattern
We derived the kinematics for each individual step from manually 
annotated video recordings of a real fly during untethered walking. 
We recorded bouts of straight walking at 360 Hz in a linear chamber 
(12-mm long × 4-mm wide × 2-mm tall) with prisms as walls. The video 
was downsampled to 120 Hz. Then, five leg key points (thorax–coxa, 
coxa–trochanter, femur–tibia, tibia–tarsus joints and claw), both 
antennae, neck, thorax and abdomen key points were manually anno-
tated from a 0.3-s episode of straight walking. The recording was per-
formed on a wild-type (PR) female adult D. melanogaster raised at 25 °C  
and 50% humidity on a 12-h light–dark cycle. The fly was recorded  
4–5 days after eclosion.

We determined the 3D position of each key point assuming that 
the prisms are oriented at 90°. We aligned resulting 3D poses to the 
template of NeuroMechFly’s skeleton by scaling the length of the full 
leg. Finally, we applied inverse kinematics to each kinematic chain to 
obtain joint angles60. From the recording, we then segmented eight 
swing-to-swing steps and eight stance-to-stance steps. Of these 16 
unique steps (five front leg steps, six middle leg steps and five hind 
leg steps), 7 were insufficiently closed (that is, mean distance between 
the first and last joint angle in the step greater than 0.17, 0.12 and 0.17 
radians for the front, middle and hind legs, respectively) and were, 
therefore, discarded. The final stepping pattern is composed of three 
steps that are of the same lengths, are closed, and, when mirrored, yield 
symmetric and smooth steps.

We obtained the final stepping pattern by (i) segmenting each 
of the nine selected steps, (ii) stretching or compressing them to the 
median step length of 0.135 s, (iii) linearly interpolating the difference 
between the first and last time points of the step through the last 10% 
of each step to guarantee perfect closure, (iv) modifying all steps so 
that phase 0 corresponded to the initiation of the swing, and (v) finally 
generating a complementary dataset with mirrored joint angles so that 
each step could be replayed in either right or left legs irrespective of 
their leg of origin. From those nine steps, we obtained 30 combined 
stepping patterns. We used the combination that maximized the dis-
placement along the fly’s initial heading direction and minimized its 
lateral displacement.

CPG-based controller
CPGs are neural circuits that generate rhythmic outputs without 
receiving rhythmic input40. Through interactions, coupled CPGs can 
synchronize with given phase offsets. As for the previous version of 
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NeuroMechFly, we implemented CPGs by adapting those used to model 
limb actuation in salamanders4. All DoFs for a given leg of the fly were 
controlled by a single CPG. The oscillatory output of a given CPG was 
then interpreted as the phase and amplitude of the step cycle. The 
gait pattern emerges from the phase biases of the different CPGs. We 
used an idealized tripod gait for walking in our CPG model. The precise 
definition of the CPG network can be found in Supplementary Note 4,  
and the parameters are detailed in Supplementary Tables 2 and 3.

Rule-based controller
We used a rule-based controller to illustrate a decentralized control 
architecture. This controller was inspired by the first three rules 
described in Walknet1,61,62. The first rule ensures stability by inhibiting 
swing onset in the rostral neighbor of a swinging leg. The second rule 
ensures the propagation of the wave by eliciting a swing in the rostral 
and contralateral neighbors of a leg entering stance phase. The third 
rule enforces temporal coherence by eliciting a swing in the caudal 
and contralateral neighbors of a leg approaching the end of its stance 
phase. The rules modify a stepping likelihood score for each leg, and 
a step is initiated on the leg in stance phase with the highest positive 
score. If all legs have negative scores, no step is initiated. If multiple 
legs have similar scores (difference < 0.1% of the highest score), a leg 
is selected at random to avoid artifacts resulting from small numerical 
errors. The contributions of these rules are weighted (Supplementary 
Table 4): rule 1 is weighted most heavily as it is crucial to maintain 
stability. Rules 2 and 3 are given different weights for ipsilateral and 
contralateral connections. To maintain synchrony, we ensured that the 
duration of the swing and stance periods were identical across all legs. 
To more fairly compare the rule-based controller with the CPG control-
ler, we scaled the duration of steps to match the stepping frequency 
of the CPG controller.

Hybrid controller
The hybrid controller is a CPG controller with two additional rules that 
can be activated depending on leg mechanosensory signals. These rules 
allow the fly to recover when a leg becomes stuck in a gap (for example, 
in gapped terrain) or hits an obstacle (for example, in blocks terrain) 
by adjusting the leg in question. The first rule (‘overstretch rule’) is 
activated when a leg is extended farther than expected along the z 
axis (indicating that the leg may have fallen into a gap). More precisely, 
this rule becomes active when the tip of a leg is >0.05 mm lower than 
the third most extended leg along the z axis. Due to numerical errors 
and physics instabilities, the z positions of the tips of the legs read out 
from the physics simulator are sometimes slightly below 0 when the 
legs are on the ground. A 0.05-mm margin was, therefore, added to 
avoid spurious detection of leg overstretch. If multiple legs meet this 
criterion, only the leg that extends the furthest is corrected. The second 
rule (‘stumbling rule’) is activated when a leg comes into unexpected 
contact with an object, resulting in a horizontal force against the direc-
tion of locomotion. More precisely, this rule becomes active when the 
tibia or the two most proximal segments of the tarsus have a contact 
force greater than 1 mN opposing the heading of the fly while the leg is 
in swing. When either rule is activated, a shift is progressively added to 
a subset of joints on the leg in question such that the leg lifts up higher 
than normal during swing or extends slightly more during stance. The 
step phase dependence of the adjustment is obtained by using a gain 
described by a piece-wise linear function reaching a maximum of 0.8 
at the swing midpoint, a minimum of −0.1 at the stance midpoint and 
remaining at 0 from the beginning of the swing to the end of the swing 
plus one-eighth of a cycle. Supplementary Table 5 provides a summary 
of the joints involved in leg retraction and their rates of change. Both 
rules are persistent to ensure proper release of the leg: if one rule was 
active during the past 0.002 s, the leg enters a persistence period pro-
longing the adjustment for 0.002 s. Once the persistence period is over 
and as long as the rules are no longer active, joint angles progressively 

reset. To avoid overcorrection, the leg’s position is adjusted for 0.008 s 
before the increment is capped. The swing duration was extended by 
one-eighth of a cycle to delay the initiation of adhesion and give more 
time for the leg to clear any obstacles.

Benchmarking of locomotor controllers over rugged terrains
We benchmarked locomotor controllers by running 20 simulations, 
starting from different spawn positions and initial states, for 1.5 s each 
and computing the average velocity in the horizontal plane. Walking 
speeds driven by the controllers are comparable because the same 
preprogrammed step is used for all controllers and walking speed is 
only influenced by inter-leg coordination. ‘Gapped terrain’ consists of 
horizontal 1-mm-wide blocks separated by 0.3-mm-wide, 2-mm-deep 
gaps. ‘Blocks terrain’ consists of 1.3 × 1.3-mm blocks configured in a 
checkerboard pattern, with half of the blocks 0.35 mm higher than the 
others. A small overlap is added between blocks to avoid extremely thin 
surfaces near the corners that can lead to physics instabilities. ‘Mixed 
terrain’ consists of alternating flat, gapped and block patterns along 
the x axis. We used a joint position gain kp of 45 and an adhesion force 
of 40 mN for all controllers.

Control of turning
Walking flies execute turns on a continuum of sharpness. The turning 
program is controlled by descending neurons63. For smoother turns 
(that is, rotations < 20°), the fly mostly increases the stroke amplitude 
of its outer legs. For sharper turns (20–50°) the fly additionally 
decreases the stroke amplitude of its inner legs. For very sharp in-place 
turns (>50°), the fly steps its inner legs backward64. Our controller 
receives a two-dimensional descending input that controls turning 
(Fig. 2g). On each side, the descending signal DN ∈ ℝ  modifies the 
intrinsic frequency νi and maximum amplitude Ri of each oscillator i  
as follows:

R⋆
i
(DN) = |DN |, ν⋆

i
(DN ) = {

νi if DN > 0,

−νi otherwise ,
(1)

where R⋆
i

 and ν⋆
i

 are the modified maximum amplitude and intrinsic 
frequency, respectively.

Implementation of vision
Flies have three major types of ommatidia—units arranged in a hexa
gonal pattern to make up the compound eye. These differentiate colors 
and polarization properties by using different combinations of photo
receptors. Yellow-type and pale-type ommatidia are stochastically 
arranged throughout the eye and enable two-dimensional chromatic 
sensitivity in the UV~300 nm-to-yellow range65. The yellow-type and 
pale-type ommatidia are found at a 7:3 ratio66. A third type is found in 
the eye’s dorsal rim area facing the sky and is specialized for polariza-
tion detection during navigation67; this type of ommatidia is not imple-
mented in our model. The field of view of each eye is defined based on 
prior studies68,69. In our implementation, yellow-type and pale-type 
ommatidia are instead made sensitive to the green and blue channels 
of the physics simulator. For a more biologically accurate representa-
tion of color, the green-channel and blue-channel display colors can be 
set as the inner products of the actual surface reflectance spectrum of 
the object and the spectral response curves of the appropriate photo
receptors65. We corrected the input images to superimpose a ‘fish-eye’ 
effect that makes the representation of angles consistent throughout 
the field of view (Supplementary Note 5 and Extended Data Fig. 3c,d).

Visual object tracking task
In our visual object tracking task, the fly follows a black sphere moving 
in an S-shaped trajectory at 10 mm s−1. To achieve this, we first used  
a thresholding rule to detect the object (normalized light intensity ρ̄ 
below 0.2). Then, we computed the position and size of the object  

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02497-y

(both normalized) as seen from each eye. Finally, we linearly adjusted 
the descending signal on each side depending on the object’s azimuth 
as seen from the ipsilateral eye. The turning bias is updated every  
0.05 s of simulated time. More precisely, as shown in equation (2),

DNi = min (max(kai + b,DNmin),DNmax) , (2)

where DNi is the descending signal on side i; ai is the azimuth expressed 
as the deviation from the anterior edge of the eye’s field of view, 
normalized to [0, 1]; k = −3, b = 1 describe the response curve; 
DNmin = 0.4,DNmax = 1.2  are the minimal and maximal allowed values 
for the descending signal, respectively.

Olfactory chemotaxis task
In the olfactory chemotaxis task, the fly seeks an attractive odor source 
while avoiding two aversive odor sources. To achieve this, we first 
calculate the odor intensities sensed at the locations of the antennae 
and maxillary palps based on a diffusion function, I(d), where d is the 
distance from the odor source and I(d) gives the odor intensity. The 
odor diffusion relationship can be defined by the user. In this example, 
we used the inverse square relationship I(d) = Ipeak/d2 where Ipeak is the 
peak intensity. If there are multiple sources for the same odor, their 
intensities are summed. Then, for the attractive odor, we averaged 
intensities sensed by the antennae and the maxillary palps weighted 
by 9:1 (roughly comparable to the ratio of ORNs in the antennae and 
maxillary palps70). By contrast, to demonstrate the possibility of using 
different sensors for different odors, we used only the intensity sensed 
by the antennae for the aversive odor to emulate odorants that can only 
be sensed by one but not both organs. We performed this process for 
olfactory organs on each side of the head and multiplied the relative 
differences in intensities between both sides with a gain factor. Next, 
we summed up this product for each odor and nonlinearly transformed 
it into a turning bias. This bias modulates descending signals that drive 
turning. The turning bias is updated every 0.05 s in simulated time. 
More precisely, according to equations (3)–(6),

s = ∑
o

γo
Ileft,o − Iright,o

(Ileft,o + Iright,o)/2
, (3)

b = tanh(s2), (4)

DNinner = b(DNmax − DNmin), (5)

DNouter = DNmax, (6)

where s is the weighted sum of bilateral differences in odor intensities, 
b is the nonlinearly transformed turning bias, Iside,o is the mean  
intensity of odor o sensed by the antenna and the maxillary palp on  
the specified side; DNinner, DNouter are the DN drives on the inner and 
outer sides, respectively (when s > 0, the fly performs a right turn, vice 
versa); DNmin = 0.2,DNmax = 1 define the range of the DN drives; and γo 
is the gain of odor o (γattractive = −500 and γaversive = 80).

Path integration using ascending feedback
To test the degree to which path integration can be performed using 
ascending feedback, we constructed a scenario in which the fly model 
performs random exploration of a featureless environment and tries 
to estimate its position. To collect training data, we make the fly 
alternate between forward walking and in-place turning. Turning  
is modeled as a Poisson process with a rate λturn = 2 s−1. We deliber-
ately chose a relatively high λturn, compared to the range of typical fly  
behavior, to make path integration more difficult. We simulated walk-
ing using three walking gaits: tripod gait (three legs in stance at  
a time), tetrapod gait (four legs in stance at a time) and wave gait  

(five legs in stance at a time). When the fly executes a turn, we apply 
a fixed asymmetrical descending drive of [DNinner,DNouter] . For the 
tripod and tetrapod gaits, [DNinner,DNouter] = [−0.2, 1.0]; for the wave 
gait, [DNinner,DNouter] = [0.4, 1.0] . These choices led to qualitatively 
similar turning. The direction of the turn is chosen at random. The 
duration of the turn (and, therefore, the angle turned) is sampled from 
a normal distribution centered at 0.4 s with a standard deviation of 
0.1 s. The fly receives no visual information—akin to navigating in the 
dark. We ran N = 15 trials with different random seeds for each of the 
three gaits. Each trial was 20-s long. For simplicity, the correction 
rules in the hybrid controller were disabled for this experiment. Then, 
we developed a path integration algorithm that separately predicts 
the changes in heading and forward displacement using the difference 
and sum of the cumulative stride lengths on the left and right sides. 
These signals are then integrated over time to estimate the fly’s posi-
tion. Parameters in this algorithm are fitted to the aforementioned 
training data. A detailed description of the algorithm can be found in 
Supplementary Note 6.

Head stabilization using ascending feedback
We first simulated walking over the ‘blocks’ terrain and recorded move-
ments of the thorax. We recorded joint angles and ground contacts 
throughout the simulation and calculated the optimal neck roll and 
pitch angles that would ‘cancel out’ thoracic rotations. We used these 
angles as ground truth. Using the joint angles and ground contacts 
as inputs, we trained an artificial neural network (MLP) to predict the 
optimal correction angles. These predicted correction angles are then 
used to actuate the neck joint using a proportional derivative control-
ler. Details of this process can be found in Supplementary Note 7.

Multimodal navigation task solved using reinforcement 
learning
In the multimodal navigation task, the fly locomotes over rugged  
terrain to seek an attractive odor source while avoiding a visual obstacle 
in its path. To achieve this, we used a hierarchical controller consisting 
of (i) a vision module that extracts lower-dimensional visual features 
from retinal inputs, (ii) a decision module that predicts the appropriate 
turning bias given pre-extracted visual features and odor intensities, 
and (iii) a descending interface passing the turning bias to a down-
stream (iv) hybrid motor controller that integrates CPG states with 
leg mechanosensory feedback. To reduce training time, we slightly 
simplified the ‘mixed terrain’ by reducing the gap width to 0.2 mm and 
the block height to 0.3 mm.

We started by training a convolutional neural network to extract 
features from the raw visual input, namely the direction of the object 
relative to the fly, the distance of the object from the fly, whether the 
object is within the fly’s field of view, the azimuth of the object seen from 
each eye, and the size of the object on the retina. Details of this vision 
preprocessing model can be found in Supplementary Note 8. Then, we 
trained an MLP to perform the multimodal navigation task using Soft 
Actor-Critic (SAC), a reinforcement learning algorithm71. Details of the 
reinforcement learning task are outlined in Supplementary Note 9.

Tracking complex odor plumes
We simulated the complex odor plume using PhiFlow72 based on exist-
ing open-source software73. Once simulated, we provided the plume 
concentration s at the appropriate location to the odor sensors of 
the simulated fly. The plume is also overlaid onto the rendered image 
when applicable. Then, we implemented a tracking algorithm similar 
to the one in ref. 51 wherein the fly makes decisions based on discrete, 
binarized plume encounters. Briefly, the fly switches between walking 
and stopping governed by Poisson processes whose rates depend on 
the time since the last odor encounter and the accumulation of odor 
encounters, respectively. The fly also turns based on a Poisson process 
where the direction of turning depends on the encounter frequency. 
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Details about the odor plume simulation and the odor-tracking algo-
rithm can be found in Supplementary Note 10.

Closed-loop fly following using a connectome-constrained 
visual system model
To simulate the responses of visual system neurons to the visual experi-
ence of the simulated fly, we interfaced NeuroMechFly with a published 
connectome-constrained visual system model31 implemented in the 
FlyVision package (https://github.com/TuragaLab/flyvis/). We modi-
fied its implementation to handle one frame at a time rather than the 
whole dataset at once, enabling closed-loop deployment. Since both 
FlyGym and FlyVision use a hexagonally arranged ommatidia grid 
with a side length of 16 ommatidia, there is a one-to-one mapping for 
ommatidia between the two packages. We sampled the visual experi-
ence of the simulated fly at 500 Hz and simulated the FlyVision model 
at the same rate. The two eyes are simulated independently. We used 
the best-performing model reported in the visual system modeling 
study31 rather than the whole ensemble of models.

From the visual system simulation, we read out the activities of 
the 34 T-shaped transmedullary neurons, which are considered the 
outputs of the optic lobe. We compared the activities of these neurons 
with their baseline activities, obtained by simulating the fly walking in 
an empty arena. We then detected the object by identifying ommatidia 
for which neural activities differed substantially from baseline. More 
precisely, for each cell in the hexagonal ommatidia grid, we computed 
an object score χ, defined in equation (7),

χ = 1
|𝒞𝒞𝒞 ∑

cell∈𝒞𝒞

|||
acell − acell,mean

acell,s.d.

||| , (7)

where 𝒞𝒞 is the set of neurons used, acell is the activity of a cell, and 
acell,mean, acell,s.d. are the mean and standard deviation of the activity of 
the same cell in the baseline simulation. Then, we selected ommatidia 
where χ is greater than a threshold χthr = 7 as the object. Once the object 
mask was detected, we calculated a descending signal using the method 
described in ‘Visual object tracking task’ with the range of DN  
drives [DNmin,DNmax] set to [0.4, 1.2]. This descending signal was then 
passed to the hybrid walking controller to navigate either flat or ‘blocks’ 
(height reduced to 0.2 mm) terrain.

In the schematic diagram Fig. 6e, the placement of Tm and TmY 
neurons is based on ref. 74; the placement of T1 neurons is based on  
ref. 75; the placement of T2 and T3 neurons is based on ref. 76; the 
placement of T4 and T5 neurons is based on ref. 77.

Software
We used Python 3.12, NumPy 1.26.4, SciPy 1.13.0, OpenCV-Python 
4.9.0.80, Numba 0.59.1 and Pandas 2.2.2 for general computing; Gym-
nasium 0.29.1, MuJoCo 3.1.4, dm_control 1.0.18 and PhiFlow 2.5.3 for 
physics simulation; PyTorch 2.2.2/2.3.0, PyTorch Lightning 2.2.2 and 
PyTorch Geometric 2.5.0 for neural networks; Stable Baselines 3 2.3 for 
reinforcement learning; Nvidia graphics driver 550.54.15 and Nvidia 
CUDA Toolkit 12.4 for GPU acceleration; FlyVision commit 056e4aa 
for connectome-constrained visual system simulation; SeqIKPy 1.0.0 
for inverse kinematics; and Blender 2.81 for rigging the biomechanical 
model. Installation is managed automatically by package installers  
such as pip based on the setup.py file of our FlyGym package  
(‘Code availability’).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data are available via The Harvard Dataverse Repository at https://doi.
org/10.7910/DVN/3MCEYR (ref. 78). This repository includes (i) the 

experimentally recorded walking kinematics, (ii) trained parameters 
of the path integration models, (iii) trained parameters of the head 
stabilization models, (iv) trained parameters of the visual processing 
and reinforcement learning models in the multimodal navigation task, 
(v) training data for the visual processing model, and the graph repre-
sentation of the ommatidia lattice used to perform graph convolution, 
(vi) the simulated complex plume dataset and (vii) baseline neuron 
activities in the connectome-constrained visual system model. Source 
data are provided with this paper.

Code availability
The FlyGym package is available at https://github.com/NeLy-EPFL/
flygym/ under the Apache-2.0 license. The documentation for FlyGym, 
along with detailed tutorials for some experiments in this paper, is 
available at https://neuromechfly.org/.
The code used to generate some figures is not a part of the FlyGym 
package but is instead available at https://github.com/NeLy-EPFL/
nmf2-paper under the same license.
A frozen snapshot of our code is available via Zenodo at https://doi.org/ 
10.5281/zenodo.12973000 (ref. 79). However, FlyGym is under conti
nued development and we recommend always using the latest version.  
Additionally, the results might not be bit-for-bit identical to the ones 
shown in this paper even with an exact copy of the code and its depend-
encies. This is due to differences in the computing hardware.
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Extended Data Fig. 1 | Improvements to the biomechanical model. 
A comparison of the original (left) and updated (right) NeuroMechFly 
biomechanical model from a (a) zoomed-in view of the head, highlighting 
antennal DoFs, (b) the side views, and (c) the front views. DoFs are indicated in 

green. The highlighted differences are: (1) additional DoFs in the antennae, (2) a 
gap for the neck between the head and the thorax, (3) angles of the thorax and the 
position of the head relative to it, and (4) the placements of the legs on the thorax.
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Extended Data Fig. 2 | Preprogrammed stepping based on experimentally 
recorded data. Joint kinematics for each leg during preprogrammed stepping. 
Kinematic patterns derived from behavioral recordings. Time series for each 
joint are color-coded. ThC: thorax-coxa joint; CTr: coxa-trochanter joint; FTi: 

femur-tibia joint; TiTa: tibia-tarsus joint. Note the left-right symmetry in roll and 
yaw DoFs. Periods when adhesion is turned off during swing to facilitate lifting 
each leg are indicated in light gray; periods when adhesion is on are indicated in 
dark gray.
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(c) A raw camera view of what the fly sees in this environment before applying a 

fisheye effect. Note that by default, the rectilinear camera distorted areas closer 
to the edges of the FOV to keep the lines straight. (d) A fisheye effect is applied  
to simulate the roughly spherical arrangement of ommatidia in the fly eye.  
(e) Retinal inputs are simulated by binning the pixels according to the hexagonal 
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Ommatidia are randomly sensitive to green (yellow-type) and blue (pale-type) 
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Extended Data Fig. 4 | Trajectories during path integration based on 
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estimates of walking trajectories for five trials (rows) and three different insect 

locomotor gaits (columns). Indicated are starting positions of the paths (black 
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in light intensity near the horizon when the head is not stabilized; this is due to 
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