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Discovering principles underlying the control of animal behavior requires

atight dialogue between experiments and neuromechanical models.
Such models have primarily been used to investigate motor control with
less emphasis on how the brain and motor systems work together during
hierarchical sensorimotor control. NeuroMechFly v2 expands Drosophila
neuromechanical modeling by enabling vision, olfaction, ascending
motor feedback and complex terrains that can be navigated using leg
adhesion. Weillustrate its capabilities by constructing biologically inspired
controllers that use ascending feedback to perform path integration and
head stabilization. After adding vision and olfaction, we train a controller
using reinforcement learning to perform a multimodal navigation task.
Finally, weillustrate more bio-realistic modeling involving complex odor
plume navigation, and fly-fly following using a connectome-constrained
visual network. NeuroMechFly can be used to accelerate the discovery

of explanatory models of the nervous system and to develop machine
learning-based controllers for autonomous artificial agents and robots.

How the nervous system controls behavior is a deeply entangled
problem: nested feedback loops occur at multiple levels including
the physiology of individual neurons, the recurrent dynamics of neural
circuits, biomechanical interactions with the environment and sensory
signalsresulting from one’sown actions. Therefore, investigating and
modeling any of these elements inisolation, although useful, will always
be fundamentally incomplete. To overcome this gap, neuroscience
requires simulation frameworks that enable the exploration of hier-
archicalfeedback loopsinan end-to-end manner. Numerous detailed
neuromechanical models have been developed to explore how animals
control motor programs like walking"?, swimming? and transitions
between them®. As well, in the field of reinforcement learning more
abstract and simplified ‘creatures” have been widely used to model
visuomotor coordination®, decision-making’ and learning algorithms®,
These latter models often lack realistic motor control and biomechan-
ics and, as a consequence, typically generate only simplified control
signals that drive unrealistically limited categorical variables or joint

degrees of freedom (DoFs)’. Thus, although progressis being made'* ™,

asubstantial gap remains at the interface between machine learn-
ing models and morphologically realistic neuromechanical models
of most animals. Anideal model would enable the exploration of hier-
archical controllers'—like those found in biological agents—which
include higher-order brain-like systems that integrate multimodal
sensory inputs, ascending motor feedback and internal states as well
as lower-level motor systems that decode descending brain commands
and execute behaviors (Fig. 1a).

The adult fruit fly, Drosophila melanogaster, is anideal animal for
comprehensively modeling hierarchical control. It has only 200,000
neurons inits brain” (about10°>-10° times smaller than the mouse and
human brains); its principal motor system (the ventral nerve cord or
VNC) has only ~15,000 neurons'® (about 10>-10* times smaller than the
mouse and human spinal cords). Using this small number of neurons,
flies can nevertheless generate complex behaviors. They can walk over
complex terrain'’, make rapid corrective maneuvers during flight*,
execute courtship sequences?, fight off competitors*andlearn”. The
organization of the fly’s nervous systemresembles that of vertebrates,
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Fig.1|Schematic overview of the NeuroMechFly v2 modeling framework.

a, Diagram highlighting the integrative and hierarchical aspects of the expanded
NeuroMechFly framework. Sensory inputs—visual and olfactory—are processed
by the brain to select an appropriate action. Instructions to execute the selected
action are then communicated to the lower-level motor centers (VNC) through
descending signals. The VNC executes the motor program via joint actions and
mechanosensory feedback signals are sent back to the motor system to inform
the next movement and to the brain via ascending pathways. Indicated are
components that were present in the original model butimproved (brown, in
shaded box) as well as new elements (blue, outside shaded box). b, Simulation
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camera view of the neuromechanical model, NeuroMechFly, walking over
complex terrain, using vision to avoid a pillar, and using olfaction to reach an
attractive odor source (orange). ¢, The biomechanical model and itsinteraction
with the environment are encapsulated asa POMDP task. A user-defined
controller interfaces with the task through actions (red) and observations
(dark blue). The user can extend the POMDP task by adding preprogrammed
processing routines for sensory inputs (light blue) and premotor outputs
(magenta), to modify the action and observation spaces handled by the
controller.

yetithasbeencompletely mappedin connectomes (thatis, wiring dia-
grams) of the brain?* and VNC**, Additionally, thousands of transgenic
fly lines enable the repeated targeting of sparse sets of neurons” for
optical activation®, silencing®’ and recordings’’. These resources and
tools have led to the development of connectome-constrained models
of neural circuits®*2. However, we still lack an integrative simulation
framework of the fly, embedded in a physics simulator, to embody and
explore these models to identify the principles governing biological
intelligence and autonomous behavioral control.

Toward this goal, we previously developed NeuroMechFly, a mor-
phologically realistic model of the adult fly”, With its biomechanical
hull, we could infer unmeasured forces and collisions during the simu-
lated replay of recorded limb kinematics from walking and grooming
flies. Furthermore, we could optimize simple coupled oscillators to
control fast and stable tethered walking. Although foundational, this
previous simulation framework could not fully model hierarchical
sensorimotor control: complex environments, brain-level sensory
processing and the physics and biomechanics required for untethered
behavioral control were lacking. Here we describe NeuroMechFly v2,
a simulation framework that addresses these gaps by (i) improving
biomechanics and stepping, (ii) adding leg adhesion, (iii) simulating
visual and olfactory sensing, and (iv) enriching the fly’s environment
with rugged terrain, obstacles and sensory objects including other
flies (Fig. 1a,b). We illustrate the exploration of locomotor control
over rugged terrain, simple visual object tracking and simple odor
taxis. Next, we demonstrate the use of ascending limb motor signals
to perform pathintegration and head stabilization. Then, we combine
these elements to build integrated hierarchical machine learning

models that solve a multimodal task—visually avoiding an obstacle
toreach anattractive odor source over rugged terrain. We show how
this artificial neural network controller can be trained using rein-
forcement learning. Finally, we illustrate more biological realism by
modeling a Drosophila odor-taxis strategy to navigate acomplex odor
plume and by using aconnectome-constrained visual system network
to perform fly-fly following. The modularity of NeuroMechFly v2
allows usersto flexibly interact with the simulation at multiple levels
of abstraction and facilitates its widespread adoption for research
and education. Our implementation’s compliance with a standard
reinforcement learning task interface can also facilitate a dialogue
between neuroscience, machine learning and robotics (Fig. 1c and
Supplementary Note1).

Results

The FlyGym package: astandardized simulation framework

To improve the usability of the NeuroMechFly simulation framework
(released as the FlyGym Python package; https://neuromechfly.org/),
we made three fundamental changes. First, the package fully complies
with Gymnasium’, a standard interface for controller-environment
interaction in robotics and reinforcement learning (Fig. 1c). Second,
we moved the simulation framework from PyBullet to MuJoCo™, amore
intensively maintained and widely used physics simulator. MujoCo is
known for better stability and performance® and supports a wider
range of actuators including those for leg adhesion. It was made
an open-source tool after NeuroMechFly vl was published. Third, to
facilitate implementing custom environmental features within the
simulation, we expanded the interface for the fly model’s arena.
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InNeuroMechFly v2, we clarify the framing of the control problem
as a partially observable Markov decision process (POMDP). At each
time step, the simulation provides the controller with an observation
and, optionally, auser-defined reward. Then, the simulation receives an
action fromthe controller and steps the physics forward accordingly.
The observation space is a user-configurable subset of the state space
including visual input, olfactory input, ground contacts, joint states
(angles, angular velocities and torques) and the states (for example,
position, orientation) of potentially multiple fly models in the arena.
The action space includes the control signals (for example, target
angles) for each actuated DoF and the on/off signal for leg adhesion.
Users can easily extend this framework by incorporating additional
sensory or premotor processing into the Markov decision process
(Fig. 1c). For example, in a visual taxis example described below, we
programmed the centroid calculation to reduce the observation space
to fewer dimensions (such as the azimuth of the object seen from
each eye) and used a network of central coupled oscillators to reduce
the action space to a two-dimensional descending command. This
increased flexibility and usability allows one to rapidly adapt the simu-
lation to their own research question.

Improved morphological accuracy and kinematic realism
A promise of biomechanical models such as NeuroMechFly is to allow
researchers studyingbody movements to, for example, infer unmeas-
ured collisions, contacts and forces during the replay of real recorded
body-part kinematics". However, doing so at a high precision is only
possible with a morphologically realistically rigged body model. In
particular, modeling behaviors that depend on self-contact (such as
grooming) requires precise kinematic replay to read out where and
how individual body parts interact with one another. Therefore, we
improved the morphological accuracy and granularity of several
body-part meshes. First, we adjusted the placement and default angles
of jointsbetween the thorax and front leg coxae as well as between the
thorax and head (Extended Data Fig. 1a,b). These adjustments were
made based on high-magnification video data. Second, to better facili-
tate control of the antennae and readout of their mechanosensory
signals, we split their meshes into three segments: pedicel, funiculus
and arista. We added DoFs between these segments, allowing each to
beseparately actuated or passively moved and its angular displacement
tobe measured (Extended DataFig.1c). We note that users can simplify
body geometriesif morphological accuracyis of less importance than
computational speed.

We also improved the realism of limb kinematics during walking.
Leg kinematics in NeuroMechFly v1 (ref. 13) were based on data from
tethered flies walking onaspherical treadmill. In our simulation these
kinematics appeared unnatural during untethered walking, turning and
locomotion over rugged terrain. Therefore, to obtain realistic unteth-
ered three-dimensional (3D) leg kinematics, we designed a system
to record three views of a fly walking straight through a corridor. We
annotated and triangulated key points from these data and extracted
individual steps. For each pair of legs, we segmented and processed a
step while enforcing symmetry, closure and equal lengths (Extended
Data Fig. 2 and Supplementary Video 1). Replaying and looping these
stepsin NeuroMechFly (Supplementary Video 2) drove straight walking
more closely resembling that of areal fly.

Legtip adhesion enables locomotionin three dimensions

Insects, including flies, use highly specialized adhesive structures
to walk over complex 3D terrain with ease. These include adhesive
pads with substantial normal forces (>100 times body weight) and
frictional forces®. Adhesion provides mechanical coupling between
the legs during locomotion and improves force transduction with
the ground. We cannot easily model the physics of real adhesion.
Therefore, we modeled leg adhesion as an additional normal force
whenalegtip (thatis, pretarsus) isin contact with the surface (Fig. 2a

and Supplementary Video 3). As for insects®, this normal force also
increases the frictional forces. Despite the huge forces generated by
adhesive pads, insects appear tobe able to lift their legs without much
effort. Although liftoff mechanisms are known for some insects®*?,
they are not known for D. melanogaster. Therefore, we abstracted the
mechanisms used by other insects and lifted the legs during walking
by turning off adhesion forces during the swing phase. To illustrate
how leg adhesion expands the behavioral repertoire of our model,
we simulated tripod-gait walking** over terrain with up to 180° of
inclination (Fig. 2b and Supplementary Video 4). Without adhesion,
the fly slipped at as low as 30° inclination. By contrast, with adhesion
the fly could locomote over terrain with sometimes more than >90° of
inclination (Fig. 2c). We expect experimental recordings of realinverted
walking kinematics to enable the simulation of locomotion at even
higher inclinations.

Complex terrains demonstrate the use of locomotor feedback
A variety of mechanisms have been proposed for insect locomotion
ranging across a spectrum from those depending purely on central
pattern generators (CPGs, namely circuits in the central nervous sys-
tem that produce rhythmic motor output without rhythmic input*°)
to those relying on sensory feedback-based rules'. Evidence for each
of these control strategies has been found across species, motivating
their applicationinrobotics*®*2. Although walking over flat terrain can
be solved using a variety of feedback-independent control strategies,
leg mechanosensory signals are thought to be required to navigate
rugged terrain. Todemonstrate that NeuroMechFly canserve as atest
bedto evaluate different control strategiesin complex environments,
we developed three rugged terrain types to compare with smooth
terrain: one with gaps perpendicular to the initial heading of the fly,
one with blocks of alternating height and one that is a mixture of the
previous two (Fig. 2d).

We next built controllers and benchmarked them over flat
and rugged terrains. The control strategies tested include purely
CPG-based (Fig. 2e and Supplementary Video 5), purely sensory feed-
backrule-based (Fig.2e and Supplementary Video 6) or intermediate
to these two, with CPGs but also sensory feedback rules to recover
from challenging positions (Fig. 2e and Supplementary Video 7). At
baseline (that s, on flat terrain), CPG and hybrid controllers were
fastest (Fig. 2f). However, on rugged terrain the CPG-based control-
ler struggled compared with the rule-based controller (Fig. 2f). The
hybrid controller leveraging both CPGs and sensory feedback rules
overcame this trade-off: it remained fast over rugged terrain (Fig. 2f)
(Supplementary Video 8) while still being able to overcome obsta-
cles. These results demonstrate theimportance of rugged terrains in
studying locomotor control: they expose the failure modes of con-
trollers that otherwise work on flat terrain. Hereon, for our more
complex sensorimotor tasks, we use the hybrid controller driven by
a two-dimensional descending signal to control walking speed and
turning by modulating oscillator frequencies and amplitude asym-
metries, respectively (Fig. 2g).

Vision and olfaction enable sensory navigation

To reach attractive objects (for example, potential mates, or food
sources), avert from repulsive features (for example, pheromones
from predators) and avoid obstacles, animals use hierarchical control-
lers: higher-order brain systems must process sensory signals, use
them to select the next course of action, and then transmit directives
via descending pathways to lower-level motor systems. To simulate
this sensorimotor hierarchy, we next added vision and olfaction to
NeuroMechFly (Fig. 3a).

Afly’scompound eye consists of ~700-750 individual units called
ommatidia that are arranged in a hexagonal pattern*. We emulated
thisby attachinga color camerato each of our model’s compound eyes
(Fig. 3a) and then transformed each camera image into 721 binson a
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Fig.2|Locomotionin three dimensions and over rugged terrains. a, A schematic
of contact forces on the fly’s leg with the addition of adhesion. b, Trajectory
(blue) of the fly as it walks up a vertical wall. The legs are controlled by a CPG
controller withadhesion enabled (F = 40 mN). ¢, Critical slope (angle) at which
the fly falls or does not proceed forward at different magnitudes of leg adhesion
force. d, Terrains for exploring the efficacy of distinct locomotor strategies.

We tested four terrains: a flat surface, a surface with gaps, a surface with blocks
and amixture of all surface types. e, Three controllers tested across terrains:
acontroller with six coupled CPGs controlling the swing and stance of the legs,
arule-based controller in which the phase of one leg’s movements influences the
movements of neighboring legs, and a hybrid controller consisting of coupled
CPGs with sensory feedback-based corrective mechanisms that execute stepping

phase-dependent adjustments when the leg might be stuck. In all cases, leg
adhesion s present. f, The performance (average speed) of each locomotor
controller while walking over four types of terrain. Shown as dots are N = 20
trials, each with arandom spawn location and controller initialization. Overlaid
arebox plotsindicating the median, upper and lower quartiles and whiskers
extending to the furthest points excluding outliers that are more than 1.5 times
theinterquartile range (IQR) beyond the IQR. A one-sided, asymptotic Mann-
Whitney Utest was used to generate the statistics: NS, not significant; **P < 0.01,
***P < 0.001 (see Supplementary Table 1for complete statistics). g, Turning is
controlled by the asymmetric modulation of a two-dimensional descending
command signal that regulates the directions and amplitudes of oscillators on
eachside of the body.

hexagonal grid® (Fig. 3b). We assumed a 270° combined azimuth for the
fly’s field of view, with a-17° binocular overlap (Extended DataFig. 3). As
aninitial step toward enabling heterogeneous color sensitivity in our
model, weimplemented yellow-type and pale-type ommatidia—sensitive

tothegreenand blue channels of images rendered by the physics simu-
lator. Users can substitute the green and blue-channel values with the
desired light intensities sensed by yellow-type and pale-type ommatidia
to achieve more bio-realistic chromatic vision.
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Fig.3|Vision and olfaction enable closed-loop sensorimotor control. a, The
placement of cameras for vision (green), and odor sensors—antennae (blue)
and maxillary palps (yellow)—on the fly model’s head. b, A simulation of the
visual inputs perceived by the fly while facing three different colored pillars.
Ommatidia perceive the same natural color in two different intensities due to
selective sensitivity to different wavelengths of the two ommatidia types. For
example, the blue pillaris perceived as darker by the yellow-type and as brighter
by pale-type ommatidia. Indicated are some example yellow-type and pale-type
ommatidia. The positions of ommatidia types are randomly assigned. ¢, A visual
object tracking task. The fly must follow a black sphere moving inan S-shaped
trajectory (left). To execute this task, we first extract the azimuth of the centroid
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ofthe object on the retina for each eye (right). These azimuths are then linearly
transformed and capped to generate the appropriate descending command

to CPG-based controllers. d, An odor-taxis task. The fly must seek an attractive
odor source while avoiding two aversive odor sources (left). Note that the blue
and orange odor markers are for visualization purposes only and are not seen by
the simulated fly. To execute this task, we first multiply the differences in mean
odor intensities sensed by the antennae and maxillary palps on either side of the
head by the gains of the corresponding odor types (right). The product is then
passed through a nonlinear function restraining its range, which is supplied to
the descending controller.

In addition to vision, we also made it possible for our model to
detectodorsinthe simulation environment. Flies have olfactory recep-
tor neurons (ORNs) intheir antennae and maxillary palps. ORNs detect
specific odorant molecules and convey this information to the brain’s
antennal lobe, whereitis further processed*. We emulated olfaction by
attaching virtual odor sensors to our model’s antennae and maxillary
palps (Fig.3a). These virtual sensors can detect odor intensitiesacross a
multidimensional space that canbe thought as representing, for exam-
ple, the concentrations of monomolecular chemicals sensed by ORNs,
or the intensities of composite odors co-activating numerous projec-
tion neurons in the antennal lobe. The modularity of our framework
makes it possible for users to add more sensors to specific head loca-
tions and to implement additional signal processing by downstream
olfactory centers (for example, lateral horn or mushroombody*®).

To illustrate the use of visual and olfactory sensing, we imple-
mented visual object tracking and olfactory chemotaxis. In our object
tracking task, the fly model had to visually track and follow a black
sphere moving along an S-shaped trajectory in the environment. The
controller processed the object’s visual location by computing its
centroid position on the retina. Then, these visual features were lin-
early transformed into a two-dimensional descending signal (Fig. 3¢c)
that modulated the frequencies and amplitudes of CPG-based oscil-
lators on each side of the body (Fig. 2g). This strategy allowed the fly
to effectively track the sphere (Fig. 3c and Supplementary Video 9).In
our odor-seeking task, the simulated fly had toreach an attractive odor
source while avoiding two aversive odor sources. The controller used
sensors on the antennae and maxillary palps to compare the relative
intensities of attractive and aversive odors across the left and right
sides of the head*®. These intensity values were multiplied by weights
of opposite signs for attractive-versus-aversive odors. This left-right
bias was used to asymmetrically control the descending signal (Fig. 3d),
yielding effective odor-based navigation through the environment
(Fig.3d and Supplementary Video 10).

Ascending signals for path integration and head stabilization
Thus far, we have demonstrated how brain-level sensory processing can
drive the motor system via descending control. The inverse, ascend-
ing signals are thought to convey information back to the brain for
action selection, motor planning and sensory contextualization®.
We next investigated how ascending feedback enables the modeling
ofimportant behaviors like path integration and head stabilization.

To effectively navigate the world, many animals, including flies*,
perform path integration wherein they constantly estimate and keep
track of their own heading and distance traveled (‘odometry’). The
source of these idiothetic cues for path integration is unknown but
may, in principle, be derived from ascending leg proprioceptive and
tactile signals. We next explored how ascending proprioceptive and
tactile feedback might be used toinformthe brain of the change inbody
orientation and displacement. For each leg, we accumulated stride
lengths by computing the forward translation of the leg tip relative
to the thorax when the leg was in contact with the ground. Then, we
computed the differences and sums of the left and right total stride
lengths for each pair of legs withinashort time window. These left-right
differences and sums were used to predict the change in heading and
forward displacement, respectively (Fig. 4a). Despite beinglinear, our
model could give accurate predictions of the change in heading and
forward displacement (Fig. 4b). These signals could be integrated over
time to accurately estimate the fly’s true two-dimensional position
(Fig.4c).Wenote, however, that the heading of the fly could sometimes
be wrongly estimated (Extended Data Fig. 4) in rare instances when
the heading change prediction was off by a large margin. Thus, posi-
tion estimates based on idiothetic cues alone can be prone to errors
in heading integration even with an exceptionally well-performing
internal model (©*= 0.96; Fig. 4b). This suggests that calibration using
external sensory (for example, visual) cues may be crucial.

In addition to informing path integration, ascending signals
are well poised to perform other important tasks including visually
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a, Schematic of the pathintegration task. The simulated fly walks in arandom
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to predict the change in heading and forward displacement and integrate these
signals over time to estimate its own position. b, Scatterplot for 15 test trials (only
0.1% of all points are shown to facilitate visualization). Shown are the actual-
versus-predicted changes in heading (left) or forward displacement (right).

¢, Anexample of an actual-versus-predicted walking path. d, Schematic of the
head stabilization task. The fly model walks over flat terrain. An MLP is trained to

Left eye
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Standard deviation in light intensity

use leg joint angles and ground contacts to predict aneck roll and pitch actuation
to compensate for thoracic movements and to stabilize the visual scene.

e, Time series of head and thoracic roll and pitch with respect to the horizon
when walking over either flat or blocks terrain. Shown are data with head
stabilization. Note that without head stabilization the head and the thorax are
coupled. f, The standard deviation of ommatidia readings from the left eye

while walking over flat, featureless terrain without (left) or with (right) head
stabilization. Note the high variability in light intensity near the horizon when the
headis not stabilized. Thisis due to more pronounced self-motion of the head.

tracking landmarks or targets (for example, potential mates) while
navigating over rugged terrain. In this context head stabilization may
be controlled using leg sensory feedback signals*’ to compensate for
body pitchand roll*. To explore this possibility in our embodied model,
we designed acontrollerinwhich legjoint angles (that is, propriocep-
tive signals) and ground contacts (that s, tactile signals) were fed into

amultilayer perceptron (MLP). This MLP was trained to predict the
appropriate neck joint actuation (thatis, head roll and pitch) required
to cancel visual rotations caused by the animal’s own body movements
during locomotion (using the hybrid controller) over either flat or
blocksterrain (Fig. 4d). These predictions made from mechanosensory
signals could indeed be used to dampen head movements in the roll
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Fig. 5| Using reinforcement learning to train a hierarchical controller for a
multimodal task. a, Schematic of the multimodal reinforcement learning-based
navigation controller. Visual features are extracted using a convolutional neural
network. Olfactory features are processed as in Fig. 3d. These features are input
to an artificial neural network, which is trained through reinforcement learning
to output appropriate descending turning commands. These commands are
executed by a hybrid low-level motor controller integrating CPGs and sensory
feedback and using leg adhesion. Ascending motor feedback signals are used to
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perform head stabilization for visual (and to a lesser extent olfactory) processing.
b, The decision-making network is trained using reinforcement learning to
enable the fly to seek an attractive odor source while avoiding a visually detected
obstacle over complex terrain. An example of one successful trial is shown. The
orange odor marker is for visualization purposes only and is not visible to the
simulated fly. ¢, The trajectories of the fly in nine examples (eight successful; one
failed) beginning from different spawn positions (circle markers).

and pitch axes compared to thoracic movements (Fig. 4e) inamanner
reminiscent of datafromblowflies®. Asaresult, visual inputs, especially
near the horizon, were more stable (that is, exhibiting less variance
in light intensity when walking in a featureless environment; Fig. 4f,
Extended Data Fig. 5a,b and Supplementary Video 11). Restricting the
number and kinds of leg proprioceptive inputs to the MLP shows that
ascending feedback concerning multiple DoFs appears to be neces-
sary to estimate body orientation for head stabilization (Extended
DataFig. 5c,d).

Hierarchical controller trained with reinforcement learning

Withthe elements of a hierarchical controllerin place, it becomes possi-
bletoleverage modernmachinelearning approachesto train anetwork
to accomplish more complex tasks. To illustrate this, we trained our
fly model to avoid an obstacle while searching for an attractive odor
source over rugged terrain. Intotal, our hierarchical controller™ (Fig. 5a)
consisted of: (i) a vision module (a convolutional neural network on a
hexagonal lattice) that extracts the object’s direction, distance, loca-
tions and sizes on the retinas (Extended Data Fig. 6); (ii) a decision
module (an MLP) that receives as inputs preprocessed visual features
and odor intensities from each antenna and computes a turning bias;

(iii) a two-dimensional descending signal that modulates locomotor
CPGs that drive walking and turning; (iv) a hybrid walking controller
(Fig. 2g); and (v) an ascending feedback module that performs head
stabilization. We trained the vision module in asupervised manner by
randomly placing the fly and obstacle in the arena to collect training
dataand trained the decision module through reinforcement learning.
This hierarchical controller could achieve multimodal visual-olfactory
navigationover rugged terrains (Fig.5b,cand Supplementary Video12).
This integrative task demonstrates how one can define individual
components in a modular fashion and combine them to investigate a
hierarchical sensorimotor taskin closed loop using NeuroMechFly v2.

Using more bio-realistic algorithms for sensorimotor control

With full access to raw lightintensities and odor concentrations, users
canbuild their own sensory-rich environments and process these with
models of even higher levels of biological realism. We first illustrate
thisby using a Drosophila olfactory taxis algorithm to navigate acom-
plex odor plume. We simulated a plume embedded in airflow (Fig. 6a)
representing the propagation of, for example, an attractive food odor
inthe real world. Unlike the simplified controller used in Fig. 3d, here
weimplemented a previously proposed Drosophila plume navigation
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Fig. 6 | Incorporating more bio-realistic environments and controllers.
a,Modeling acomplex odor plume to simulate taxis toward an attractive odor
source (fromref. 51). b, Transitions between locomotion states based on plume
encounters. The transition from forward walking to stopping is governed by a
Poisson process whose rate changes based on the time since the last encounter.
The transition from stopping to forward walking is governed by a Poisson process
whose rate changes based on a history of recent encounters (accumulated
evidence). The transition from forward walking to turning is governed by a
Poisson process with a fixed rate. Each turn has a fixed duration. The probability
of turning upwind increases as the encounter frequency increases. c, Fly
trajectories for nine successful trials when the odor source (dashed circle) was
reached. Trajectories are color coded. The mean plume density is shown in blue
onthe background. d, Overview of the fly following task. Two fly models are
spawned. The first (‘leading’) fly has a preset circular walking trajectory. The

second (‘following’) fly uses a hierarchical controller to follow the leading fly.

e, Block diagram of the Drosophila optic lobe. Indicated in blue and green are

the neurons used to detect the leading fly. Only connections directly relevant

to the neurons used in the fly-tracking task are shown. f, Object detection score
and activity patterns of 34 putative output columnar neuron types (of 65 total)
drawn from a connectome-constrained visual system network® when the leading
flyis moving in the field of view of the ‘following’ fly’s right eye. g, Schematic of
ahierarchical controller using visual inputs, a connectome-constrained visual
system network, processing of population activity, object detection, descending
control of a hybrid controller with leg adhesion and ascending feedback for head
stabilization. h, Performance of this more bio-realistic visual system network

on fly following with or without ascending feedback-based head stabilization.
Shown are 1l trials each.

algorithm® to control locomotion. Using this algorithm, to reach the
odor source, the fly randomly switches between forward walking,
pausing and turning (Fig. 6b). These actions are governed by Poisson
processes, with Poisson rates and turning direction bias modulated
based on odor encounters to favor navigation toward the target. In
our simulation, the fly successfully reached within 15 mm of the odor
source (Fig. 6c and Supplementary Video 13) with alow (9 of 100 trials),
albeit similar, success rate comparable to what was seeninreal fliesin
alarger arenaover alonger time period®.

Ultimately, to gain insights into how the real fly brain works, one
would explore controllers with artificial neurons that can be mapped
to real neurons or neuronal cell types. This may be achieved by build-
ing artificial neural networks with architectures constrained by the
connectivity of the brain** and the VNC*?°, To illustrate how such

models might be embodied and studied in the context of autonomous
behavior, we designed a ‘fly following’ task in which a fly must use a
realistic visual system model (Fig. 6d) to follow another fly—akin to
chasing behaviors during courtship. We used a recently constructed
connectome-constrained model* for this task. We interfaced Neuro-
MechFly with this visual system model to emulate layered visual pro-
cessing inthe fly brain. Concretely, we passed the visual experience of
the ‘following’ fly asinputs to this pretrained connectome-constrained
model and used the activities of T1-T5, all Tm neurons and all TmY
neurons (indicated as putative output cells types™) to perform object
detection (Fig. 6f). Then, based on the position of the detected object,
we modulated the descending turning signal (Fig. 6g) to drive the
hybrid controller (Fig. 2g), which controls walking. We asked to what
extent ascending feedback-driven head stabilization (Fig. 4d) is
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necessary to enable reliable fly following. We found that, although
over flat terrain the ‘following’ fly could successfully track the ‘lead-
ing’ fly without head stabilization (Extended Data Fig. 7), stabilization
was crucial for tracking over rugged terrain (Fig. 6h and Supplemen-
tary Video 14). We obtained similar results even when using a smaller
subset of neurons that provide inputs to LC9 and LC10-LC neurons
implicated in courtship in particular®” (Extended Data Fig. 7b). These
results highlight how realistic neural networks can be coupled with
embodied models to close the sensorimotor control loop.

Discussion

Here we haveintroduced NeuroMechFly v2, aframework for perform-
ingintegrated sensorimotor neuromechanical simulations of the adult
fly, D. melanogaster. In Supplementary Note 1, we provide a summary
of general features currently supported in NeuroMechFly v2, specific
modeling choices concretely demonstrated in this paper and opportu-
nities for future work. Because our simulation framework is modular,
researchers canbuild integrated modelsin aninteroperable manner by
choosingthe appropriate level of detail for each part of the model to suit
the scientific question under consideration. For example, one can use
moreabstract baselines or existing models for control elements outside
the focus of investigation. Although important behaviors like those
involving the control of wings/halteres (for example, flight'*), abdo-
men (for example, egg laying) and proboscis (for example, feeding)
are not yetimplemented, they are supported within this framework.
With enriched sensory feedback and improved biomechanics, Neuro-
MechFly v2 enables the whole-body simulation of complex behaviors
requiring controllers that span sensing, navigation, internal states®,
learning® and motor control.

In the future, our simulation framework is likely to be further
improved in a number of ways. First, we anticipate that recent devel-
opments in physics simulation, particularly GPU acceleration and
differentiable simulation will facilitate the training of larger models
throughreinforcementlearning. Second, careful measurements and
analyses of the Drosophila musculoskeletal system (that is, tendons
and muscles) could improve the interface between neural network
controllers and the biomechanical embodiment. Third, as additional
connectome-constrained neural circuit models become available,
they can be added to the corpus of controllers in our modular simu-
lation framework. FlyGym’s compatibility with the Gymnasium API
will ensure that changes are implemented relatively easily without
disrupting the established user interface. Inthe more distant future—
following substantial improvements in modeling infrastructure
enabling high-throughput, low-latency simulations—a similar simu-
lation framework could be integrated into closed-loop experiments.
For example, NeuroMechFly could be used during experiments
to replay an animal’s kinematics as captured by pose estimation
methods, enabling the real-time inference of dynamic variables
such as contacts and informing experimental perturbations in
closed loop*. These efforts will bring the field closer to achieving
the ultimate goal of uncovering neuromechanical mechanisms
giving rise to adaptive animal behaviors in a sensory-rich and physi-
cally complex world.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/541592-024-02497-y.
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Methods

The FlyGym package

FlyGymisimplemented based on MuJoCo® and the dm_control**library
and complies with the Gymnasium APF for the Markov decision pro-
cess. The user interacts with the simulation through ‘actions’ and
‘observations’ (Fig. 1 and Supplementary Note 2). The definition of
the action and observations in the default control task can be found
inSupplementary Note 3. More detailed, low-level information can be
accessed directly using dm_control and MujoCo.

We configured the meshes at 1,000x scale in MujoCo to obtain
observation measurements in mm and mN. The user can implement
preprogrammed premotor computations and sensory preprocessing
by extending the base F1y or Simulation classes (Fig. 1c). This will
modify the action and observation spaces accordingly.

Ifthe user wishes to use asimplified, ball-and-stick model to speed
up computation, one can use a MuJoCo feature that approximates
body geometries as ‘capsules’ (that is, cylinders with a hemisphere
at each end). To do so, the user should replace type = "mesh" with
type="capsule" inthe <geom> tag of the model MJCF file.

Updated rigging of the biomechanical model

In Drosophila, the antenna consists of three main segments—the
scape, pedicel and funiculus—in addition to the arista®. The fly has
four muscles that canactively control the joint between the scape and
pedicel’. By contrast, the funiculus and the arista move or deform
passively in response to external forces (for example, wind, limb
contact during grooming). In the original NeuroMechFly model,
the entire antenna could move relative to the head with one DoF. We
improved the model by separating each antennal mesh into three
different meshes using Blender. In the biomechanical model, ‘bones’
determine how objects move with respect to one another. We posi-
tioned the bones to accurately replace joints based on anatomical
features such as the stalk-like structures connecting the funiculus
to the pedicel”. We then constructed a kinematic chain connecting
these segments: scape-pedicel-funiculus-arista from proximal to
distal. Instead of simulating the arista as a soft body (which is com-
putationally expensive), we emulated the compliance of the arista by
adding three DoFs between the funiculus and the arista. The passive
movement of the arista can be fine-tuned by modifying the stiffness
and damping coefficients of these DoFs. We gave the remainingjoints
(thatis, head-pedicel and pedicel-funiculus) all three rotational DoFs
because the real number of DoFs in these antennal joints remains
unknown. Future users can modify each DoF (for example, fix/unfix
or stiffen) in the model file to emulate the measured dynamics of
the antennae.

The position of the neck joint affects the translation of segments
on the head, such as the proboscis, antennae and eyes. The neck is
located ventral to the hair plate behind the head. In our previous
model, the neck had one unactuated pitch DoF. Here we modified
the location of the neck joint by comparing the head rotations of the
model with those of the real fly and added two known DoFs (yaw and
roll) to the neck. Furthermore, we spaced the head away from the
thorax to emulate the space filled by the neck. The size of the neck
was determined by measuring the proportion of head size to neck
size in real animals®. We confirmed that the rotation center of the
neck joint fits the original pose from the NeuroMechFly CT scan by
actuating the neck joint to match the original pose. Next, we adjusted
the positions of the front legs based on the distance between the front
leg thorax-coxa position and anatomical landmarks (for example,
humeral bristles) and an overlay of camera images of real animals
with images of the model. Finally, we changed the resting pose of
the model such that the angle of the scutellum would resemble that
of real animals standing freely (untethered) on flat terrain. We used
the FARMS simulation framework® to generate the MJCF file of the
updated model.

Leg adhesion and critical climbing angle

Leg adhesion was added using built-in MuJoCo actuators. Adhesion
takes the form of an artificial force injected perpendicular to the con-
tact surface at the point of contact. This force is oriented toward the
object colliding with the body part containing the actuator. If multiple
contacts occur with external objects and the adhesion actuated body,
theforceis equally divided between these contact points.

In our model, adhesion is actuated and can be turned on and off
during locomotion. We manually defined the adhesion on/off periods
within the preprogrammed stepping pattern (Extended Data Fig. 2).
Adhesionis on during the stance phase and off during the swing phase
(‘Stepping pattern’). We controlled adhesioninabinary fashion butitis
possible to use a gradient of adhesion forces by modulating the input
to the adhesion actuator at every time step.

To quantify the impact of maximal adhesive force on the ability
of the fly model to climb (Fig. 2c), we measured the critical slope—the
angle in degrees at which the fly could no longer maintain forward
locomotion, or flipped—as a function of the maximal adhesion force.
Flipping is defined as when either the absolute roll or pitch angle of
the fly is above 11/2. A fly has failed to maintain forward locomotion if
its position along the surface is negative compared to its initial posi-
tionafter1s.

Stepping pattern

We derived the kinematics for each individual step from manually
annotated video recordings of areal fly during untethered walking.
We recorded bouts of straight walking at 360 Hz in a linear chamber
(12-mmlong x 4-mmwide x 2-mm tall) with prisms as walls. The video
was downsampled to 120 Hz. Then, five leg key points (thorax-coxa,
coxa-trochanter, femur-tibia, tibia-tarsus joints and claw), both
antennae, neck, thoraxand abdomen key points were manually anno-
tated from a 0.3-s episode of straight walking. The recording was per-
formed onawild-type (PR) female adult D. melanogaster raised at 25 °C
and 50% humidity on a 12-h light-dark cycle. The fly was recorded
4-5days after eclosion.

We determined the 3D position of each key point assuming that
the prisms are oriented at 90°. We aligned resulting 3D poses to the
template of NeuroMechFly’s skeleton by scaling the length of the full
leg. Finally, we applied inverse kinematics to each kinematic chain to
obtain joint angles®®. From the recording, we then segmented eight
swing-to-swing steps and eight stance-to-stance steps. Of these 16
unique steps (five front leg steps, six middle leg steps and five hind
leg steps), 7 were insufficiently closed (that is, mean distance between
the first and last joint angle in the step greater than 0.17,0.12 and 0.17
radians for the front, middle and hind legs, respectively) and were,
therefore, discarded. The final stepping patternis composed of three
stepsthatare of the samelengths, are closed, and, whenmirrored, yield
symmetric and smooth steps.

We obtained the final stepping pattern by (i) segmenting each
of the nine selected steps, (ii) stretching or compressing them to the
medianstep lengthof 0.135 s, (iii) linearly interpolating the difference
between the first and last time points of the step through the last 10%
of each step to guarantee perfect closure, (iv) modifying all steps so
that phase O corresponded to theinitiation of the swing, and (v) finally
generating acomplementary dataset with mirrored joint angles so that
each step could be replayed in either right or left legs irrespective of
their leg of origin. From those nine steps, we obtained 30 combined
stepping patterns. We used the combination that maximized the dis-
placement along the fly’s initial heading direction and minimized its
lateral displacement.

CPG-based controller

CPGs are neural circuits that generate rhythmic outputs without
receiving rhythmic input*°. Through interactions, coupled CPGs can
synchronize with given phase offsets. As for the previous version of
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NeuroMechFly, weimplemented CPGs by adapting those used to model
limb actuation in salamanders®. All DoFs for a given leg of the fly were
controlled by a single CPG. The oscillatory output of a given CPG was
then interpreted as the phase and amplitude of the step cycle. The
gait pattern emerges from the phase biases of the different CPGs. We
used anidealized tripod gait for walking in our CPG model. The precise
definition of the CPG network can be found in Supplementary Note 4,
and the parameters are detailed in Supplementary Tables 2 and 3.

Rule-based controller

We used a rule-based controller to illustrate a decentralized control
architecture. This controller was inspired by the first three rules
described in Walknet"*"*2, The first rule ensures stability by inhibiting
swing onset in the rostral neighbor of a swinging leg. The second rule
ensures the propagation of the wave by eliciting a swing in the rostral
and contralateral neighbors of a leg entering stance phase. The third
rule enforces temporal coherence by eliciting a swing in the caudal
and contralateral neighbors of aleg approaching the end of its stance
phase. The rules modify a stepping likelihood score for each leg, and
astepis initiated on the leg in stance phase with the highest positive
score. If all legs have negative scores, no step is initiated. If multiple
legs have similar scores (difference < 0.1% of the highest score), aleg
isselected atrandomto avoid artifacts resulting from small numerical
errors. The contributions of these rules are weighted (Supplementary
Table 4): rule 1is weighted most heavily as it is crucial to maintain
stability. Rules 2 and 3 are given different weights for ipsilateral and
contralateral connections. To maintain synchrony, we ensured that the
duration of the swing and stance periods were identical across all legs.
Tomore fairly compare the rule-based controller with the CPG control-
ler, we scaled the duration of steps to match the stepping frequency
ofthe CPG controller.

Hybrid controller

Thehybrid controllerisa CPG controller with two additional rules that
canbeactivated depending onleg mechanosensory signals. Theserules
allowthe fly torecover whenalegbecomes stuckinagap (for example,
in gapped terrain) or hits an obstacle (for example, in blocks terrain)
by adjusting the leg in question. The first rule (‘overstretch rule’) is
activated when a leg is extended farther than expected along the z
axis (indicating that the leg may have falleninto agap). More precisely,
this rule becomes active when the tip of aleg is >0.05 mm lower than
the third most extended leg along the z axis. Due to numerical errors
and physicsinstabilities, the z positions of the tips of the legs read out
from the physics simulator are sometimes slightly below O when the
legs are on the ground. A 0.05-mm margin was, therefore, added to
avoid spurious detection of leg overstretch. If multiple legs meet this
criterion, only the leg that extends the furthestis corrected. The second
rule (‘stumbling rule’) is activated when a leg comes into unexpected
contactwithan object, resulting in a horizontal force against the direc-
tion oflocomotion. More precisely, this rule becomes active when the
tibia or the two most proximal segments of the tarsus have a contact
force greater than1 mN opposing the heading of the fly while thelegis
inswing. Wheneither ruleis activated, ashiftis progressively added to
asubset of joints onthelegin question such that the leg lifts up higher
than normal during swing or extends slightly more during stance. The
step phase dependence of the adjustment is obtained by using a gain
described by a piece-wise linear function reaching a maximum of 0.8
at the swing midpoint, a minimum of -0.1 at the stance midpoint and
remaining at O from the beginning of the swing to the end of the swing
plus one-eighth of acycle. Supplementary Table 5 provides asummary
of the joints involved in leg retraction and their rates of change. Both
rules are persistent to ensure proper release of the leg: if one rule was
active during the past 0.002 s, the leg enters a persistence period pro-
longing the adjustment for 0.002 s. Once the persistence periodis over
andaslongastherulesarenolonger active, joint angles progressively

reset. To avoid overcorrection, the leg’s position is adjusted for 0.008 s
before the increment is capped. The swing duration was extended by
one-eighthofacycleto delay theinitiation of adhesion and give more
time for the leg to clear any obstacles.

Benchmarking of locomotor controllers over rugged terrains
We benchmarked locomotor controllers by running 20 simulations,
starting from different spawn positions and initial states, for1.5 seach
and computing the average velocity in the horizontal plane. Walking
speeds driven by the controllers are comparable because the same
preprogrammed step is used for all controllers and walking speed is
onlyinfluenced by inter-leg coordination. ‘Gapped terrain’ consists of
horizontal -mm-wide blocks separated by 0.3-mm-wide, 2-mm-deep
gaps. ‘Blocks terrain’ consists of 1.3 x 1.3-mm blocks configured in a
checkerboard pattern, with half of the blocks 0.35 mm higher than the
others. Asmalloverlapis added between blocks to avoid extremely thin
surfaces near the corners that canlead to physics instabilities. ‘Mixed
terrain’ consists of alternating flat, gapped and block patterns along
the xaxis. We used a joint position gain k, of 45 and an adhesion force
of 40 mN for all controllers.

Control of turning

Walking flies execute turns on a continuum of sharpness. The turning
program is controlled by descending neurons®. For smoother turns
(thatis, rotations < 20°), the fly mostly increases the stroke amplitude
of its outer legs. For sharper turns (20-50°) the fly additionally
decreases the stroke amplitude of itsinner legs. For very sharp in-place
turns (>50°), the fly steps its inner legs backward®. Our controller
receives a two-dimensional descending input that controls turning
(Fig. 2g). On each side, the descending signal DN e R modifies the
intrinsic frequency v;and maximum amplitude R; of each oscillator i
as follows:

V; if DN > 0,
V¥(DN) = n
—v;  otherwise,

R¥(DN) = [DN|,
where R* and v} are the modified maximum amplitude and intrinsic
frequency, respectively.

Implementation of vision

Flies have three major types of ommatidia—units arranged in a hexa-
gonal pattern to make up the compound eye. These differentiate colors
and polarization properties by using different combinations of photo-
receptors. Yellow-type and pale-type ommatidia are stochastically
arranged throughout the eye and enable two-dimensional chromatic
sensitivity in the UV_;y ,-to-yellow range®. The yellow-type and
pale-type ommatidia are found at a 7:3 ratio®. A third type is found in
the eye’s dorsal rim area facing the sky and is specialized for polariza-
tion detection during navigation®’; this type of ommatidia is notimple-
mentedin our model. The field of view of each eye is defined based on
prior studies®®*®’, In our implementation, yellow-type and pale-type
ommatidia are instead made sensitive to the green and blue channels
of the physics simulator. For amorebiologically accurate representa-
tionof color, the green-channel and blue-channel display colorscanbe
setastheinner products of the actual surface reflectance spectrum of
the object and the spectral response curves of the appropriate photo-
receptors®. We corrected the inputimages to superimpose a ‘fish-eye’
effect that makes the representation of angles consistent throughout
the field of view (Supplementary Note 5 and Extended Data Fig. 3c,d).

Visual object tracking task

Inour visual object tracking task, the fly follows ablack sphere moving
in an S-shaped trajectory at 10 mm s™. To achieve this, we first used
athresholding rule to detect the object (normalized light intensity p
below 0.2). Then, we computed the position and size of the object
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(bothnormalized) as seen from each eye. Finally, we linearly adjusted
the descending signal on each side depending on the object’s azimuth
as seen from the ipsilateral eye. The turning bias is updated every
0.05 s of simulated time. More precisely, as shown in equation (2),

DN; = min (max(ka; + b, DNpin), DNpay ) » )

where DN;is the descending signal onside i; a;is the azimuth expressed
as the deviation from the anterior edge of the eye’s field of view,
normalized to [0, 1]; k=-3, b=1 describe the response curve;
DNin = 0.4,DN,,,, = 1.2 are the minimal and maximal allowed values
for the descending signal, respectively.

Olfactory chemotaxis task

Inthe olfactory chemotaxis task, the fly seeks an attractive odor source
while avoiding two aversive odor sources. To achieve this, we first
calculate the odor intensities sensed at the locations of the antennae
and maxillary palps based on a diffusion function, /(d), where d is the
distance from the odor source and /(d) gives the odor intensity. The
odor diffusion relationship can be defined by the user. In this example,
we used the inverse square relationship /(d) = I,..,/d* where I, is the
peak intensity. If there are multiple sources for the same odor, their
intensities are summed. Then, for the attractive odor, we averaged
intensities sensed by the antennae and the maxillary palps weighted
by 9:1 (roughly comparable to the ratio of ORNs in the antennae and
maxillary palps’®). By contrast, to demonstrate the possibility of using
different sensors for different odors, we used only the intensity sensed
by the antennae for the aversive odor to emulate odorants that can only
be sensed by one but not both organs. We performed this process for
olfactory organs on each side of the head and multiplied the relative
differences in intensities between both sides with a gain factor. Next,
we summed up this product for each odor and nonlinearly transformed
itinto aturningbias. This bias modulates descending signals that drive
turning. The turning bias is updated every 0.05 s in simulated time.
More precisely, according to equations (3)-(6),

s=yy

0 ° (Ileft,a + Iright,a)/z ’

Ileft,o — Iright,o

3

b = tanh(s?), 4)
DNinper = b(DNmax — DNppin), (&)
DNouter = DNpax, (6)

wheresisthe weighted sumof bilateral differences in odor intensities,
b is the nonlinearly transformed turning bias, /4., is the mean
intensity of odor o sensed by the antenna and the maxillary palp on
the specified side; DN;;,.;, DN, are the DN drives on the inner and
outersides, respectively (whens >0, the fly performs aright turn, vice
versa); DNpin = 0.2, DN, = 1define the range of the DN drives; and y,
is the gain of 0dor 0 (V,«raciive = ~500 and Y yersive = 80).

Path integration using ascending feedback

Totest the degree to which pathintegration can be performed using
ascending feedback, we constructed ascenario in which the fly model
performsrandom exploration of a featureless environment and tries
to estimate its position. To collect training data, we make the fly
alternate between forward walking and in-place turning. Turning
is modeled as a Poisson process with a rate A,,,, = 2s™". We deliber-
ately chose arelatively high A,,,,, compared to the range of typical fly
behavior, to make pathintegration more difficult. We simulated walk-
ing using three walking gaits: tripod gait (three legs in stance at
atime), tetrapod gait (four legs in stance at a time) and wave gait

(five legs in stance at a time). When the fly executes a turn, we apply
a fixed asymmetrical descending drive of [DNiper, DNoyeer] - FOT the
tripod and tetrapod gaits, [DNnner» DNoueer] = [—0.2,1.0]; for the wave
gait, [DNipner DNoueer] = [0.4,1.0]. These choices led to qualitatively
similar turning. The direction of the turn is chosen at random. The
duration of the turn (and, therefore, the angle turned) is sampled from
anormal distribution centered at 0.4 s with a standard deviation of
0.1s.Theflyreceives no visual information—akinto navigatinginthe
dark. Weran N =15 trials with different random seeds for each of the
three gaits. Each trial was 20-s long. For simplicity, the correction
rulesinthe hybrid controller were disabled for this experiment. Then,
we developed a path integration algorithm that separately predicts
the changesinheading and forward displacement using the difference
and sum of the cumulative stride lengths on the left and right sides.
Thesessignals are thenintegrated over time to estimate the fly’s posi-
tion. Parameters in this algorithm are fitted to the aforementioned
training data. A detailed description of the algorithm canbe foundin
Supplementary Note 6.

Head stabilization using ascending feedback

We first simulated walking over the ‘blocks’ terrain and recorded move-
ments of the thorax. We recorded joint angles and ground contacts
throughout the simulation and calculated the optimal neck roll and
pitch angles that would ‘cancel out’ thoracic rotations. We used these
angles as ground truth. Using the joint angles and ground contacts
asinputs, we trained an artificial neural network (MLP) to predict the
optimal correction angles. These predicted correction angles are then
usedtoactuate the neckjoint usinga proportional derivative control-
ler. Details of this process can be found in Supplementary Note 7.

Multimodal navigation task solved using reinforcement
learning

In the multimodal navigation task, the fly locomotes over rugged
terraintoseek anattractive odor source while avoiding a visual obstacle
inits path. Toachieve this, we used a hierarchical controller consisting
of (i) a vision module that extracts lower-dimensional visual features
fromretinal inputs, (ii) adecision module that predicts the appropriate
turning bias given pre-extracted visual features and odor intensities,
and (iii) a descending interface passing the turning bias to a down-
stream (iv) hybrid motor controller that integrates CPG states with
leg mechanosensory feedback. To reduce training time, we slightly
simplified the ‘mixed terrain’ by reducing the gap widthto 0.2 mmand
the block height to 0.3 mm.

We started by training a convolutional neural network to extract
features from the raw visual input, namely the direction of the object
relative to the fly, the distance of the object from the fly, whether the
objectiswithinthefly’sfield of view, the azimuth of the object seen from
each eye, and the size of the object on the retina. Details of this vision
preprocessing model canbe found in Supplementary Note 8. Then, we
trained an MLP to perform the multimodal navigation task using Soft
Actor-Critic (SAC), areinforcement learning algorithm”. Details of the
reinforcement learning task are outlined in Supplementary Note 9.

Tracking complex odor plumes

We simulated the complex odor plume using PhiFlow’? based on exist-
ing open-source software”. Once simulated, we provided the plume
concentration s at the appropriate location to the odor sensors of
the simulated fly. The plume is also overlaid onto the rendered image
when applicable. Then, we implemented a tracking algorithm similar
tothe oneinref. 51 wherein the fly makes decisions based on discrete,
binarized plume encounters. Briefly, the fly switches between walking
and stopping governed by Poisson processes whose rates depend on
the time since the last odor encounter and the accumulation of odor
encounters, respectively. The fly also turns based on a Poisson process
where the direction of turning depends on the encounter frequency.
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Details about the odor plume simulation and the odor-tracking algo-
rithm canbe found in Supplementary Note 10.

Closed-loop fly following using a connectome-constrained
visual system model

Tosimulate the responses of visual system neurons to the visual experi-
ence of the simulated fly, we interfaced NeuroMechFly with a published
connectome-constrained visual system model® implemented in the
FlyVision package (https://github.com/TuragalLab/flyvis/). We modi-
fied itsimplementation to handle one frame at a time rather than the
whole dataset at once, enabling closed-loop deployment. Since both
FlyGym and FlyVision use a hexagonally arranged ommatidia grid
with a side length of 16 ommatidia, there is a one-to-one mapping for
ommatidia between the two packages. We sampled the visual experi-
ence of the simulated fly at 500 Hz and simulated the FlyVision model
at the same rate. The two eyes are simulated independently. We used
the best-performing model reported in the visual system modeling
study”' rather than the whole ensemble of models.

From the visual system simulation, we read out the activities of
the 34 T-shaped transmedullary neurons, which are considered the
outputs of the optic lobe. We compared the activities of these neurons
with their baseline activities, obtained by simulating the fly walkingin
anempty arena. Wethen detected the object by identifying ommatidia
for which neural activities differed substantially from baseline. More
precisely, for each cellin the hexagonal ommatidia grid, we computed
anobjectscorey, defined in equation (7),

Aeell — acel],mean

Acell,s.d.

, @)

“ el

cellee

where ¢ is the set of neurons used, a., is the activity of a cell, and
A el means eells.4. AT€ the mean and standard deviation of the activity of
the same cellin the baseline simulation. Then, we selected ommatidia
whereyisgreater thanathresholdy,, =7 asthe object. Once the object
maskwas detected, we calculated a descending signal using the method
described in ‘Visual object tracking task’ with the range of DN
drives [DNyin, DNmax] Set to [0.4, 1.2]. This descending signal was then
passed to the hybrid walking controller to navigate either flat or ‘blocks’
(heightreduced to 0.2 mm) terrain.

In the schematic diagram Fig. 6e, the placement of Tm and TmY
neurons is based on ref. 74; the placement of T1 neurons is based on
ref. 75; the placement of T2 and T3 neurons is based on ref. 76; the
placement of T4 and T5 neurons is based onref. 77.

Software

We used Python 3.12, NumPy 1.26.4, SciPy 1.13.0, OpenCV-Python
4.9.0.80, Numba 0.59.1and Pandas 2.2.2 for general computing; Gym-
nasium 0.29.1, MuJoCo 3.1.4, dm_control 1.0.18 and PhiFlow 2.5.3 for
physics simulation; PyTorch 2.2.2/2.3.0, PyTorch Lightning 2.2.2 and
PyTorch Geometric 2.5.0 for neural networks; Stable Baselines 32.3 for
reinforcement learning; Nvidia graphics driver 550.54.15 and Nvidia
CUDA Toolkit 12.4 for GPU acceleration; FlyVision commit 056e4aa
for connectome-constrained visual system simulation; SeqIlKPy 1.0.0
forinverse kinematics; and Blender 2.81 for rigging the biomechanical
model. Installation is managed automatically by package installers
such as pip based on the setup . py file of our FlyGym package
(‘Code availability’).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Dataare available via The Harvard Dataverse Repository at https://doi.
org/10.7910/DVN/3MCEYR (ref. 78). This repository includes (i) the

experimentally recorded walking kinematics, (ii) trained parameters
of the path integration models, (iii) trained parameters of the head
stabilization models, (iv) trained parameters of the visual processing
andreinforcement learning models in the multimodal navigation task,
(v) training data for the visual processing model, and the graph repre-
sentation of the ommatidia lattice used to perform graph convolution,
(vi) the simulated complex plume dataset and (vii) baseline neuron
activitiesinthe connectome-constrained visual system model. Source
dataare provided with this paper.

Code availability

The FlyGym package is available at https://github.com/NeLy-EPFL/
flygym/under the Apache-2.0 license. The documentation for FlyGym,
along with detailed tutorials for some experiments in this paper, is
available at https://neuromechfly.org/.

The code used to generate some figures is not a part of the FlyGym
package but is instead available at https://github.com/NeLy-EPFL/
nmf2-paper under the samelicense.

Afrozensnapshot of our codeisavailable viaZenodo at https://doi.org/
10.5281/zenodo0.12973000 (ref. 79). However, FlyGym is under conti-
nued development and we recommend always using the latest version.
Additionally, the results might not be bit-for-bit identical to the ones
showninthis paper even withanexact copy of the code and its depend-
encies. Thisis due to differences in the computing hardware.
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Original NeuroMechFly NeuroMechFly v2

Extended Data Fig. 1| Improvements to the biomechanical model. green. The highlighted differences are: (1) additional DoFs in the antennae, (2) a
A comparison of the original (left) and updated (right) NeuroMechFly gap for the neck between the head and the thorax, (3) angles of the thorax and the
biomechanical model from a (a) zoomed-in view of the head, highlighting position of the head relative to it, and (4) the placements of the legs on the thorax.

antennal DoFs, (b) the side views, and (c) the front views. DoFs are indicated in
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Extended DataFig. 2 | Preprogrammed stepping based on experimentally

recorded data. Joint kinematics for each leg during preprogrammed stepping.

Kinematic patterns derived from behavioral recordings. Time series for each
jointare color-coded. ThC: thorax-coxajoint; CTr: coxa-trochanter joint; FTi:
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femur-tibia joint; TiTa: tibia-tarsus joint. Note the left-right symmetry inroll and
yaw DoFs. Periods when adhesion is turned off during swing to facilitate lifting
eachlegareindicatedinlight gray; periods when adhesionis onare indicated in
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Overall FOV:
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FOV per eye:
144°
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Extended Data Fig. 3| Calibration of vision. (a) The calibration environment
has black pillars spaced regularly around the fly at 15° intervals. Additionally, red,
green, and blue pillars are used to indicate the anterior, midline, and posterior
field of view (FOV) limits of the left eye. Yellow, magenta, and cyan pillars indicate
the FOV limits of the right eye. (b) Each eye has a FOV spanning -144° horizontally.
The two eyes overlap by ~17°, resulting in an overall horizontal FOV of ~270°.

(c) Araw camera view of what the fly sees in this environment before applying a

Corrected input o Raw camera input o

[}

Simulated vision

Right eye

900

I "'Y;U

OO0
Sl

fisheye effect. Note that by default, the rectilinear camera distorted areas closer
to the edges of the FOV to keep the lines straight. (d) A fisheye effect is applied
to simulate the roughly spherical arrangement of ommatidiain the fly eye.

(e) Retinal inputs are simulated by binning the pixels according to the hexagonal
grid of ommatidia and taking the average intensity within each ommatidium.
Ommatidia are randomly sensitive to green (yellow-type) and blue (pale-type)
channelsina7:3ratio.
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Extended Data Fig. 4 | Trajectories during path integration based on locomotor gaits (columns). Indicated are starting positions of the paths (black
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estimates of walking trajectories for five trials (rows) and three different insect walking and turns but with different gaits.
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Extended Data Fig. 7| Performance of the connectome-constrained visual controller in a fly following task. Using (a) all T1-T5, Tm, and TmY neurons, or (b) T2,
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