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Abstract

Computational models are critical to advance our understanding of how neu-
ral, biomechanical, and physical systems interact to orchestrate animal behav-
iors. Despite the availability of near-complete reconstructions of the Drosophila
melanogaster central nervous system, musculature, and exoskeleton, anatomically
and physically grounded models of fly leg muscles are still missing. These models
provide an indispensable bridge between motor neuron activity and joint move-
ments. Here, we introduce the first 3D, data-driven musculoskeletal model of
Drosophila legs, implemented in both OpenSim and MuJoCo simulation envi-
ronments. Our model incorporates a Hill-type muscle representation based on
high-resolution X-ray scans from multiple fixed specimens. We present a pipeline
for constructing muscle models using morphological imaging data and for op-
timizing unknown muscle parameters specific to the fly. We then combine our
musculoskeletal models with detailed 3D pose estimation data from behaving flies
to achieve muscle-actuated behavioral replay in OpenSim. Simulations of muscle
activity across diverse walking and grooming behaviors predict coordinated muscle
synergies that can be tested experimentally. Furthermore, by training imitation
learning policies in MuJoCo, we test the effect of different passive joint properties
on learning speed and find that damping and stiffness facilitate learning. Overall,
our model enables the investigation of motor control in an experimentally tractable
model organism, providing insights into how biomechanics contribute to gener-
ation of complex limb movements. Moreover, our model can be used to control
embodied artificial agents to generate naturalistic and compliant locomotion in
simulated environments.

1 Introduction

Understanding how to coordinate multiple limbs with many degrees of freedom (DoFs) to accomplish
diverse motor tasks is a long-standing challenge in both motor control neuroscience and robotics.
Performing such systems-level investigations hinges upon detailed knowledge of musculoskeletal
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Figure 1: Pipeline to develop Drosophila leg musculoskeletal models. (Left) Anatomical data from
multiple flies were used to determine muscle attachment points and fiber paths, providing constraints
for constructing the muscle model in OpenSim. (Right) 3D pose estimation data from behaving
animals were then used to train the muscle-actuated agent to recapitulate detailed kinematics in
OpenSim and MuJoCo. (Middle) The resulting muscle model informed by both leg anatomy and
joint kinematics.

structures and their mechanical properties. Neuromechanical models, therefore, serve as a crucial
tool enabling rapid experimentation and hypothesis testing under controlled conditions [1–5].

Muscle-driven systems are characterized by intrinsic compliance and redundancy which can simplify
the control problems faced by artificial agents as they do for animals in the real world [6–8]. However,
many existing models abstract away key elements of musculature and passive biomechanics [9,
10] limiting their ability to capture the richness of neuromuscular coordination. This, in turn,
limits their utility for understanding how the nervous system generates robust, adaptive behaviors.
Overcoming this gap will require modeling a system that generates sufficiently complex limb-
dependent movements using a tractably small neuromuscular controller.

The fruit fly, Drosophila melanogaster, represents an ideal organism for this reverse-engineering
challenge. Flies generate complex behaviors using a compact, well-characterized, and genetically
accessible nervous system [11, 12]. Despite substantial progress in anatomical (e.g., connectomic
[13, 14]), neural [15–17], and behavioral characterization [18, 19], recently published biomechanical
models of Drosophila legs [20, 10, 21] lack the anatomical and physiological accuracy required to
model and investigate how motor networks coordinate muscles, limb kinematics, and behavior.

Here, we present the first biologically detailed musculoskeletal model of Drosophila legs across two
widely used physics engines, OpenSim and MuJoCo. Our model extends NeuroMechFly [10, 21], a
whole-body biomechanical simulation of the adult fly, by incorporating anatomically detailed muscle
representations and physiological properties. Specifically, we implement a Hill-type muscle model
informed by anatomical data [22–24] to actuate seven DoFs in three leg joints. Using this model,
we predict the relative contributions of individual muscles to joint movements generated by real
behaving flies. Furthermore, we study the influence of passive joint properties on the successful
imitation of animal behavior. Our work integrates anatomical, physiological, and behavioral data
into a unified modeling framework, providing a critical foundation for future investigations of
Drosophila neuromuscular coordination and behavioral control. This modeling framework (Figure 1)
can also accelerate the development of musculoskeletal models for other species, inform machine
learning-based algorithms for embodied agents, and facilitate the control of bioinspired robots.

2 Related work

2.1 Musculoskeletal models of animals

Musculoskeletal models have emerged as powerful tools for investigating animal biomechanics.
Open-source simulation platforms such as OpenSim [4], MyoSuite [25], and DART [26], as well as
commercial frameworks like HyFyDy [27], have made it possible to test state-of-the-art learning
algorithms on complex, high-dimensional systems. Use cases include the control of human arms for
manipulation and legs for locomotion [28, 29]. Although primarily developed to simulate human
bodies [30, 31], these tools have enabled the creation of musculoskeletal models for a wide range of
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species, including rodents [32–35], primates [36, 37], horses [38], and birds like ostriches [39, 40].
Researchers have also developed custom tools to study the interplay between neural circuits and
biomechanics in worms [41], insects [42], and other animals [43].

Recently, the fruit fly, Drosophila melanogaster, has become an increasingly prominent animal model
for musculoskeletal simulations. The first anatomically realistic fly body model, NeuroMechFly,
used micro-computed tomography (micro-CT) scans to construct a morphologically accurate 3D fly
simulation. In its earliest incarnation, simplified antagonistic spring-damper muscles were used in the
legs of NeuroMechFly to simulate locomotor dynamics [21]. More recent efforts in this [10] and other
[20] fly body models have enhanced simulations by adding, for example, multimodal sensorimotor
transformations to accomplish a wider range of behavioral tasks. However, these models still rely
on abstract —position- or torque-based— joint controllers and lack realistic muscle actuation. We
address this gap in biological fidelity in our work by explicitly modeling individual fly leg muscles
based on detailed anatomical data.

2.2 Motor control and muscle synergies

Coordinating the activities of many muscles is a fundamental challenge in motor control. It has been
proposed that the nervous system simplifies this complex problem by using muscle synergies—groups
of muscles that are co-active, acting as functional units [44, 45]. By combining a limited number
of these synergies, the brain can more efficiently produce diverse movements without needing to
control each muscle independently [44, 46]. Muscle synergies have been identified and analyzed
in real experimental data [47–49], and inspired the development of controllers that operate within
reduced-dimension muscle activation spaces [50]. These synergy-based approaches facilitate robust
coordinated movements while significantly reducing control complexity. For instance, human walking
can be performed across a range of speeds and directions using just a few lower-limb synergies [46].

Muscle synergies have also been studied extensively in insects with respect to how sensory feedback
reinforces coordinated muscle activation [51, 52]. By leveraging the complete wiring diagram of the
Drosophila nervous system—known as the connectome—recent studies have identified specific neural
circuits that may coordinate fly limb movements [53, 23]. Nevertheless, because of the anatomical
and functional complexity of Drosophila leg muscles, we cannot predict muscle activity patterns for a
given behavior based on neural connectivity or neural recordings alone. In this work, we address this
gap by (i) developing an anatomically detailed muscle model of Drosophila legs and (ii) simulating
this model to reproduce measured joint kinematics across behaviors, allowing us to predict underlying
active muscle synergy groupings.

2.3 Drosophila leg musculature

Each fly leg is a multi-jointed appendage with at least seven DoFs across five joints [21, 54]. These
joints are actuated by approximately 19 muscles, which in turn are controlled by approximately 69
motor neurons [22, 23, 55]. Notably, the muscle structure across legs is nearly identical, with a few
exceptions including tergal depressor of the trochanter (TDT) muscles in the middle legs that facilitate
jump escape [56]. Leg biomechanics are further complicated by biarticular muscles that span multiple
joints to coordinate movements across body segments [23]. Additionally, the passive properties of
joints, including their elasticity and damping, can either resist, or assist motion depending on the
direction of movement [57].

3 Methods

3.1 Acquisition of anatomical data

To reconstruct the front leg muscles, we used two publicly available datasets [58, 24] and one custom
dataset collected for this study. The custom dataset was acquired using using synchrotron radiation
µCT. Each of the three datasets captured different foreleg postures, allowing us to better understand
how muscle attachment points vary across joint configurations. We focused on annotating muscle
fibers that span the thorax–coxa, coxa–trochanter, and femur–tibia joints (Figure 2A) and grouped
them by function as described in [22, 55]. For muscles located in the thorax, we used data from [24];
for the remaining leg muscles, we relied on [58]. Muscle attachment points were then cross-validated
using our custom scan. Together, these datasets provided the anatomical basis for our muscle model.
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Figure 2: Front leg muscle reconstructions. (A) Muscles of the thorax, coxa, and femur were
segmented from high-resolution X-ray scans [58, 24] and visualized within a 3D mesh of the foreleg
in Blender. Colors denote anatomically grouped muscles, including biarticular and joint-specific
actuators. (B) Corresponding muscle-tendon units implemented in OpenSim preserve anatomical
attachment points and fiber routing. Color coding is the same as in panel A.

3.2 Muscle model construction and optimization

We modeled 15 muscle-tendon units (MTUs) per foreleg—7 in the thorax, 6 in the coxa, and 2 in
the femur—capturing 12 of the 19 muscle groups in our anatomical datasets (Figure 2B). Muscles
housed in the tibia were excluded because the tibia segment was partially captured in the X-ray data.
In the femur, we modeled the fast tibia flexor and extensor which dominate force generation at the
femur–tibia joint [59]. Trochanter muscles were omitted because their function remains unclear [55].

Each muscle group was modeled using one or two MTUs, based on a Hill-type formulation [60]. This
formulation includes a contractile element, a passive parallel elastic component, and a series elastic
component, assuming rigid tendons [61] (Figure 3A). To keep the model computationally manageable
in OpenSim [4], we selected up to two representative MTUs per muscle group to capture the main
muscle fiber functions (see Supplementary Material for more details). Muscle-tendon lengths and
initial attachment points were initialized using anatomical data (Figure 3A, right). We estimated
maximum isometric forces from the physiological cross-sectional areas (PCSAs) of the muscles,
scaling them with a specific tension of 28mN/mm

2. This value falls between those reported for
Drosophila jump muscles (37mN/mm

2) [62] and indirect flight muscles (9mN/mm
2) [56]. We

estimated max contraction velocity using a recorded X-ray video of muscle contraction during leg
movements.

Because experimental data are limited, initial parameters may not faithfully reflect biological reality.
Therefore, we refined parameters through optimization in OpenSim. For each candidate parameter set
proposed by the optimizer, static optimization (SO) inferred muscle activations from reference joint
angles, and forward dynamics (FD) simulated joint trajectories based on those activations. We used
NSGA-II to identify parameter sets that produced kinematics best matching the experimental data
(Figure 3B). To avoid overfitting, we optimized parameters across two behaviors—antennal grooming
and locomotion—retaining solutions that performed well for both behaviors (Figure 3C). Each joint
(1 or 3 DoFs) was optimized independently. For a 3-DoF joint, optimization took approximately 8 h
with 200 individuals over 40 generations. The full foreleg optimization (7 DoFs, 15 MTUs) would
require ∼ 20 hours if each optimization were run sequentially using an Intel i9-14900 processor with
64 GB of RAM.

To assess the biological plausibility of our resulting muscle models, we analyzed muscle moment
arms relative to joint motion. Our model correctly reproduced opposing signs for flexor and extensor
moment arms, and predicted the dominant contributors to joint movements (thorax-coxa, and coxa-
trochanter yaw, pitch, and roll, and femur-tibia pitch) in agreement with their known functional roles
(Figure 3D) [22, 55].
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Figure 3: Optimization and assessment of muscle model parameters. (A) Schematic repre-
sentation of a Hill-type muscle model. The contractile element (CE) produces active force, the
parallel elastic element (PE) provides passive stiffness, and the series elastic element (SE) represents
tendon elasticity. lm is the fiber length, α the pennation angle, and lt the tendon length. The total
muscle-tendon length is lmt = lm cos(α)+ lt. Anatomical parameters (fiber length, attachment points,
pennation angle) are initialized from X-ray data; physiological parameters (maximum isometric
force, activation dynamics) from experiments and literature. Parameters indicated with asterisks are
modified through optimization to match measured limb movements. Otherwise parameters were
kept at fixed values. (B) Optimization pipeline for muscle parameters. Muscle parameters are jointly
tuned to minimize the error between measured and simulated joint angles for two behaviors (antennal
grooming and locomotion). (C) Performance of muscle parameter optimization. Left: root mean
squared error (RMSE), normalized with respect to joint movement range. Right: square of the
Pearson correlation between simulated and reference joint angles across 7 DoFs (3 joints). Because
the coxa-trochanter roll joint does not move during locomotion, it is not shown and has constant
values. Data from the top 10 individuals are shown and indicated (dots). (D) Moment arms of
thoracic, coxal, and femoral muscles with respect to a single joint DoF. Other joints are fixed at
mid-range positions. Plots show means and standard deviations across 10 individuals.

3.3 Real limb kinematics data

2D and 3D limb kinematics were measured from tethered flies behaving spontaneously on an air-
supported spherical treadmill. Foreleg and head movements were tracked in 2D using DeepLabCut
[63]. Separate models were trained for each camera angle. Annotations were refined over multiple
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iterations to improve accuracy. Five synchronized cameras were calibrated using a ChArUco board,
and 3D poses were reconstructed using Anipose [64] with Viterbi filtering and spatiotemporal
regularization. The resulting 3D pose data were then used to estimate leg and head joint angles via
inverse kinematics using SeqIKPy [65]. Behavioral videos were recorded at 100 Hz and interpolated
to 500 Hz to ensure simulation stability. We focused on two distinct behaviors, forward walking and
antennal grooming, because they involve different patterns of joint coordination in the front legs and
can thus test the capacity of our muscle model to reproduce a wider range of movements.

3.4 Imitation learning

To reproduce control strategies that animals use to drive efficient limb movements, we trained policies
using imitation learning of reference motion trajectories. Imitation learning has been widely applied
in both computer graphics and motor control, providing a powerful framework for learning complex
behaviors in simulated agents [20, 40, 66–70]. Here, we trained neural network models to drive limb
movements by activating muscles. Using MyoConverter [25], we converted our OpenSim model with
optimized muscle parameters into a MuJoCo compatible format. We then created the control task
in the MuJoCo physics engine [71], using dm_control [72], to track the measured kinematics in a
muscle-actuated manner.

We trained multilayer perceptron (MLP) policies with Proximal Policy Optimization (PPO) [73]
for 15× 106 steps at a control frequency of 500 Hz, while running the physics engine at 10 kHz to
ensure stability. We used PPO due to its well-known stability and robustness in high-dimensional
continuous control tasks and based on its prior use in animal imitation learning tasks [67, 69]. The
MLPs have 2 hidden layers of 512 units followed by a layer of 256 units each and use the ReLU
activation function. Policies are trained with a learning rate of 10−5 and a discount factor of 0.99,
chosen through hyperparameter search. Each training episode was initialized from a random frame in
the motion capture sequence and terminated once the end of the clip was reached.

At each timestep, the agent received an observation including joint angles, 3D positions of selected
body parts, muscle states, and the remaining time in the clip as described in [40]. The policy produced
continuous muscle input levels (i.e., motor neuron activities) within the range of [0, 1] for each
muscle.

The reward function was designed to encourage accurate tracking of reference trajectories in Cartesian
space, joint angle space, and joint velocity space. At each timestep, the reward was defined as:

rt =
1

3

[
exp(−wpdxpos

t ) + exp(−wpdqpos
t ) + exp(−wvdqvel

t )
]
, (1)

where dxpos
t , dqpos

t , and dqvel
t denote the mean Euclidean distances between the simulated body and the

reference trajectory in Cartesian position, joint position, and joint velocity, respectively. The reward
was clipped to the range [0, 1]. The weights were set to wp = 5, and we = 3. To increase robustness,
joint angles were initialized with white noise of variance 0.02. For a 7-DoF leg model with 15 MTUs,
imitation learning took approximately 96 hours to complete on an Intel Core i7-12700 processor with
128 GB of RAM.

4 Results

4.1 Muscle synergies during walking and grooming

To investigate how individual muscles contribute to movement, we analyzed activation patterns during
forward walking and grooming. Each walking trial contained three stance-swing cycles, and each
grooming trial contained three bouts of leg sweeps (Figure 4A). Using OpenSim’s static optimization,
we estimated joint torques, muscle forces, and activations from our musculoskeletal model for both
behaviors.

Among thoracic muscles, the pleural remotor abductor (Pra) was active at stance onset, consistent
with its known role in initiating stance motion (Figure 4B, top) [22]. The tergopleural promotor
and pleural promotor were elevated during stance-to-swing transitions, driving the coxa forward
(Figure 4B, top). During grooming, by contrast, the trochanter flexor and extensor showed rhythmic,
overlapping activity, whereas they were out of phase during locomotion (Figure 4B, bottom).
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How are muscles acting in fixed groups (i.e., synergies) to produce these movements? To address this
question, we applied Non-negative Matrix Factorization (NMF), a widely used method for uncovering
low-dimensional structure in muscle activity [74], to our muscle activities data. Remarkably, just
three muscle primitives explained over 90% of the variance (Figure 4C); therefore, we proceeded with
these first three primitives. Each primitive exhibited distinct, non-overlapping temporal dynamics
(Figure 4D). The first primitive alone captured more than 80%, and aligned with stance onset during
locomotion and half of the grooming cycle.

We further examined synergy weights to reveal both invariance and flexibility. Sar and Sa contributed
consistently across all synergies and behaviors (Figure 4E), suggesting that they were task-invariant
muscles. By contrast, coxal muscles showed task-specific specializations: flexors contributed
primarily to synergy 2, whereas extensors contributed to synergy 3 for grooming. These specialization
was absent in locomotor primitives (Figure 4E), suggesting that these muscles might have broader
roles during locomotion.

Together, these findings predict that muscle coordination is highly behavior-dependent and that the
fly can flexibly repurpose the same musculature by engaging distinct, task-specific synergies.

Figure 4: Predicting muscle synergies from simulated muscle activations in OpenSim. (A)
Simulated joint angle trajectories of the left foreleg (LF) during locomotion (top) and grooming
(bottom), obtained from the Static Optimization-Forward Dynamics pipeline. (B) Simulated muscle
activation dynamics for thoracic (left), coxal (middle), and femoral (right) muscles during locomotion
(top) and grooming (bottom). (C) Variance explained by increasing numbers of synergies for
locomotion (black) and grooming (red). Three primitives capture over 90% of the variance. (D) Time
courses for the first three extracted synergies (black, gray, and green). (E) Synergy weight matrix
showing each muscle’s contribution; darker values indicate stronger loading.

4.2 Passive joint properties facilitate muscle-driven control

Movement is shaped not only by active muscle forces but also from passive biomechanical forces
in the legs that can be either resistive or assistive [57]. These properties are thought to offload
some control effort from the nervous system, suggesting that they may also facilitate learning in
musculoskeletal models.

To test this hypothesis, we systematically varied the passive properties of our MuJoCo model’s joints.
We considered three parameters: stiffness, which produces spring-like forces that return joints to their
reference angles; damping, which resists velocity; and armature, which adds joint inertia (Figure 5A).
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Armature was included in all conditions to stabilize simulations, while stiffness and damping were
selectively added or removed, yielding four different biomechanical models (Figure 5B). Each model
was then trained with PPO to imitate locomotor kinematics for 15 million steps. We quantified
learning performance by measuring the average reward early (2.5-3M steps) and late (14.5-15M
steps) in training (Figure 5C).

We found that the combination of stiffness and damping yields the fastest learning and the highest
performance, outperforming models with either property alone (Figure 5D, left). This advantage
persisted to the end of training (Figure 5D, right), although final kinematics were qualitatively
indistinguishable across models (Figure 5E). We next asked how passive properties shape muscle
control. Averaging muscle activations across time and seeds revealed similar mean levels across
conditions, but with different temporal dynamics (Figure 5F, Supplementary Material).

Overall, these results support the idea that passive joint mechanics can substantially improve the
learnability and robustness of muscle-driven control. We speculate that this is because they stabilize
motion and reduce the need for constant correction, allowing the policy to focus on producing
effective coordinated muscle patterns rather than correcting instability. In biology, a similar division
of labor between passive mechanics and active control might support movement efficiency and
robustness [57].

Figure 5: The impact of passive joint properties on imitation learning of limb kinematics. (A)
Schematic of passive joint properties modified in MuJoCo: stiffness (spring), damping, and armature
(inertia). (B) Experimental conditions combining these properties: (i) armature only, (ii) armature
and damping, (iii) armature and damping and stiffness, and (iv) armature and stiffness. (C) Motion
imitation rewards at the evaluation stage over the training period, averaged across 5 random seeds
(lines) with 5th-95th percentile ranges (shaded regions). Gray boxes indicate evaluation windows
for early and late performance in panel D. (D) Mean rewards at early (left) and late (right) training
stages. Each point is one seed. Statistical comparisons used two-sided Mann-Whitney U tests with
Holm-Bonferroni correction (* P < 0.05, ns: not significant). (B-D) Color code is the same across
panels. (E) Joint angle trajectories from ground-truth kinematics (dashed) and policy rollouts (solid)
for each condition for seeds with the highest final reward. (F) Time-averaged muscle activities across
conditions; darker shading indicates higher activation.

5 Discussion

Here, we present an end-to-end pipeline for constructing morphologically realistic Hill-type muscle
models based on annotated anatomical data. Our framework extracts each muscle’s anatomical fea-
tures, estimates physiological parameters, and optimizes unknown parameters using multi-objective
optimization. To our knowledge, a similarly comprehensive and automated approach linking anatomi-
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cal inputs to functional, muscle-driven simulations is currently lacking in the field, particularly for
widely used model organisms like Drosophila melanogaster.

We modeled 15 muscle-tendon units (MTUs) per front leg in NeuroMechFly, a biomechanical
model of adult Drosophila [21, 10]. After optimizing muscle parameters, we evaluated how each
MTU contributes to different joint DoFs during locomotion and grooming. Our results predict that
grooming and locomotion employ distinct muscle synergies. In addition, we show that incorporating
passive joint properties —such as damping and stiffness— provides useful priors for musculoskeletal
control, improving learning efficiency. Together, these results demonstrate that combining detailed
musculature with biologically inspired joint mechanics enables fast, robust, and scalable simulations
of muscle-driven behavior and facilitates the efficient training of neural controllers.

Our work provides a critical interface between the outputs of neural network controllers and physical
movements. Placing a model of the musculoskeletal system —an additional layer of processing—
between the policy network’s output and physical actions stabilizes the control task by making
the action space better formed and more error-tolerant. The possible actions taken by the policy
now sit in a space that, through the musculoskeletal model, can only generate physically plausible
movements. This eliminates many unrealistic or even catastrophic actions that would otherwise
burden the learning process. In other words, whereas a model that naively controls target joint states
would have to first learn (explicitly or implicitly) a world model of physics before learning a policy
that operates within physical constraints, our model only needs to learn the latter. This approach
enables efficient training at scale, offering a promising path to reduce the sim-to-real gap [75] without
requiring costly task-specific real-world data. Our work focuses on Drosophila, an animal with the
most complex leg kinematics whose entire nervous system has been mapped. This opens the door to
testing neural architectures which are optimized through evolution in embodied settings. We believe
our work can impact neuroscience, robotics, and machine learning, areas that share a common focus
of understanding and replicating motor control in physically grounded systems.

6 Limitations and future work

Our model has several limitations that can be addressed in future work. One major challenge is
the scarcity of experimental data and high uncertainty in our chosen physiological parameters. For
example, key properties such as the maximum isometric forces and contraction velocities were not
directly measured but instead were estimated and optimized using a combination of anatomical and
physiological data. Our model will benefit from the acquisition of further experimental data, allowing
users to narrow down the space of possible parameter values.

Another limitation is the omission of contact forces from body–body and body–environment interac-
tions. Without modeling external forces, muscle activation patterns may not accurately reflect the
demands of untethered behaviors such as locomotion. Incorporating active collision handling will be
essential for improving biomechanical realism.

Despite these limitations, our work represents the first biologically-grounded muscle modeling
framework for studying motor control in adult Drosophila melanogaster. It enables researchers to test
hypotheses of muscle function and provides a foundation for uncovering unmodeled passive dynamics
and emergent biomechanical properties. Integrating this framework with emerging experimental
datasets, such as in vivo muscle imaging [76], will help refine physiological and anatomical constraints,
narrow down the parameter space, and thereby improving the predictive power of musculoskeletal
models.
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A Supplementary Material

A.1 Muscle reconstruction and modeling of the middle and hind legs

We concentrated our efforts on developing a fully functional front-leg muscle model for two main
reasons: (i) we have access to a rich kinematic dataset spanning diverse behaviors such as grooming
and locomotion, and (ii) multiple complementary datasets exist that validate joint rotation centers and
degrees of freedom (DoFs).

Nevertheless, we also annotated muscle fibers in the midlegs (Figure S1A) and hindlegs (Figure S2A)
using our custom X-ray dataset. In total, we modeled seven muscle–tendon units (MTUs) per midleg
(Figure S1B) and eight MTUs per hindleg (Figure S2B). Because only a single dataset was available
for these legs, our ability to examine muscle attachment points across joint configurations or to
cross-validate the reconstructions was limited. For this reason, we restricted our work to anatomical
reconstruction rather than optimizing the models to reproduce motor behaviors.

Figure S1: Middle leg muscle reconstructions. (A) Muscles of the thorax, coxa, and femur
were segmented from a high-resolution X-ray scan and visualized within a 3D mesh of the leg in
Blender. Distinct colors denote anatomically grouped muscles.(B) Corresponding muscle-tendon
units implemented in OpenSim, preserve anatomical attachment points and fiber routing. Color
coding is the same as in panel A and reflects functionally grouped muscles.

Future datasets capturing the mid- and hindlegs at high resolution will enable more detailed biome-
chanical modeling and muscle reconstructions. Once such data become available, our framework can
be readily extended to achieve muscle-driven control of all six legs.

A.2 Refining the biomechanical model

A fundamental challenge in muscle modeling is accurately grounding muscle attachment points and
joint movements in anatomical data. To better align our model with biological reality, we replaced
NeuroMechFly’s foreleg meshes with those derived from X-ray scans (Figure S3A), where muscles
were reconstructed. This adjustment was motivated by two key factors. First, using the same leg
mesh as the dataset ensured a one-to-one mapping between the muscles in the dataset and our model.
Second, we identified a major discrepancy in the fully flexed resting posture of the original model’s
leg compared to real fly anatomy. Specifically, in the experimental data, the trochanter segment of
the front leg forms a bridge between the coxa and femur, positioning them side by side rather than
stacked vertically when fully flexed (Figure S3B). As a result, when fully extended, the foreleg adopts
a parenthesis-like shape rather than forming a straight line (Figure S3A).

With this improved biomechanical model, we next investigated the joint rotational axes and centers
that could more accurately replicate real leg movements. To determine these parameters, we examined
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Figure S2: Hind leg muscle reconstructions. (A) Muscles of the thorax, coxa, and femur were
segmented from a high-resolution X-ray scan and visualized within a 3D mesh of the leg in Blender.
Distinct colors denote anatomically grouped muscles. (B) Corresponding muscle-tendon units
implemented in OpenSim, preserve anatomical attachment points and fiber routing. Color coding is
the same as in panel A and reflects functionally grouped muscles.

muscle attachment points and joint condyles [S1]. Our analysis suggested that the coxa-trochanter
joint may, in fact, possess three DoFs, in contrast to the originally assumed two DoFs [S2].

To test this hypothesis, we used SeqIKPy [S3] to design a kinematic chain with three DoFs at the coxa-
trochanter joint. The revised joint configuration was equally effective at tracking the leg trajectory
compared to the original two-DoF model (Figure S3C). However, notably, the three-DoF configuration
reduced the reliance on thorax-coxa joint rotations during antennal grooming, decreasing the range
of motion from [−95◦, 50◦] to a more constrained interval of [−30◦,−7◦] (Figure S3D), preventing
unnatural rotations of the thorax-coxa joint.

A.3 Hill-type muscle model

We chose to use a Hill-type muscle model because it offers a good balance between biological realism
and computational efficiency. Hill-type muscle models are widely adopted in the biomechanics and
neuromechanics communities due to their versatility and biological plausibility [S4]. By contrast,
Ekeberg-type muscle models are computationally very efficient yet have limited biological corre-
spondence [S5]. Compared with simpler torque-driven or mass-spring systems, Hill-type models
explicitly represent the key components of a muscle-tendon unit (MTU)—namely, contractile, series
elastic, and parallel elastic elements. This structure allows us to capture essential nonlinear properties
of biological muscles, including force-velocity and force-length relationships, which are critical for
simulating realistic motor behavior.

We adopted a Hill-type model based on [S6] and [S7], consisting of a Contractile Element (CE)
for active force generation, Parallel Elasticity (PE) for passive stiffness, and Series Elasticity (SE)
representing the tendons. The Buffer Elasticity (BE) was omitted due to its negligible contribution to
muscle dynamics [S8].

The total muscle force is given by:
FMT = (FCE + FPE + Fdamper) cosα = FSE (S1)

where FCE , FPE , and Fdamper are the active, passive, and damping forces, respectively. The active
force is computed as:

FCE = a(t)Fmaxfl(lCE)fv(vCE) (S2)
where a(t) is the activation state, Fmax the maximum isometric force, and fl(lCE) and fv(vCE) the
force-length and force-velocity relationships, respectively. The passive force FPE is only active
during muscle elongation, while the damping force depends on contractile element velocity.

For compatibility across simulation engines, we set the pennation angle to zero and scaled Fmax
accordingly. Assuming a rigid tendon, the model state variables reduce to the muscle fiber length
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Figure S3: Enhancements in the biomechanical model of NeuroMechFly. (A) The forelegs
of NeuroMechFly were updated by replacing the original meshes with an anatomically detailed
muscle-based dataset. Unlike the previous model, where the fully extended leg was nearly straight,
the updated model exhibits a natural parenthesis-like curvature, consistent with the biological data
(middle). (B) The trochanter’s role in leg posture. The trochanter bridges the coxa and femur,
positioning them side by side rather than in a linear alignment. In the previous model (green), this
structural feature was simplified, whereas the updated model (red) better captures the fly’s natural joint
configuration. (C) Mean squared error (MSE) between measured 3D poses and forward kinematics
(FK) reconstructed from inverse kinematics, comparing 2-DoF and 3-DoF coxa-trochanter joint
configurations during locomotion and grooming. Both kinematic configurations perform equally well.
(D) Distribution of left foreleg joint angles during locomotion and grooming for different degrees of
freedom, showing the effect of anatomical refinements and DoF addition on the joint angle range.
ThC roll and CTr roll (in bold) show a visible decrement in range in the 3 DoF model.

lCE, ensuring C2-continuity. The complete model is defined by physiological parameters (e.g.,
Fmax, vmax, α, τact, τdeact) and anatomical parameters (e.g., lopt, lslack, muscle attachment points, and
muscle paths), detailed in Table 1.

We modeled each functional muscle group as one MTU. Unlike human muscles, many fly muscles
attach directly to the inner cuticle, often without tendons, and fibers within a group can vary consider-
ably. To model each group, we selected representative fibers using the following criteria: (i) If the
muscle attaches via a tendon, we used the tendon’s location. If attachment is via multiple fibers, we
selected the fiber closest to the group’s center of mass—typically also the median-length fiber. (ii) For
groups with widely spread attachment points, we subdivided them into smaller, more homogeneous
clusters and selected one representative fiber per cluster.

A.4 Muscle modeling in OpenSim

Muscles were defined as forceset objects in OpenSim, serving as force generators. The Millard
2013 muscle model [S6] was used, with parameters categorized into three types (Table 2): (i)
open parameters requiring optimization, (ii) fixed parameters set by model choice, and (iii) default
parameters left unchanged.

Most anatomical and physiological parameters were open parameters, extracted or estimated through
data-driven methods described in the methods section of this paper. Assuming rigid tendons, tendon
compliance was ignored, and pennation angles were set to zero, meaning MTU length changes were
solely due to muscle fiber length changes.

Control and activation parameters were adjusted for greater flexibility, with a minimum activation
of 0.01%, while max control and detailed F-L and F-V curve parameters were left at their default
values. If not explicitly defined, these curves followed empirical formulations [S6]. Due to the lack
of measured Drosophila muscle curves, default curves in OpenSim were assumed to approximate
real physiological behavior.
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Table 1: A collection of model parameters used in the muscle model. Letters A and P stand for
anatomical and physiological parameters, respectively.

Parameter Type Description

Optimal fiber length A The fiber length at which actin–myosin interactions are
maximal, i.e., when maximum force can be produced.

Tendon slack length A The length beyond which a muscle’s tendons begin resist-
ing stretch and producing force.

Pennation angles A The angle between a fascicle’s orientation and the tendon
axis.

Muscle cross-section area A The cross-section area of muscle fibers.
Muscle attachment points A The points to which a muscle tendon unit connects at its

fiber start (origin) and tendon end (insertion). Optionally
an additional attachment point can be defined for more
complex muscle paths

Muscle paths A The path that a muscle tendon unit travels along from its
origin to its insertion.

Maximum isometric force P The maximum isometric force generated by the Contrac-
tile Element (CE) at its optimal length lopt.

Maximum contraction velocity P The maximum velocity at which the Contractile Element
(CE) can contract.

Activation time constants P A time constant determining the transfer speed from neural
signal to muscle activation.

Deactivation time constants P A time constant determining the transfer speed from neural
signal to muscle deactivation.

Muscle damping factors P The coefficient for the muscle damping force as defined
in Millard’s muscle equation.

A.5 Muscle parameter optimization using NSGA-II in OpenSim

To optimize muscle parameters, we used NSGA-II, an elitist genetic algorithm well-suited for
multi-objective optimization problems [S9], implemented in Python using the geatpy package.

Each muscle–tendon unit (MTU) was optimized in a 6-dimensional parameter space (or 9-dimensional
when an additional via point was included in the muscle path), with separate objective metrics
defined for each active degree of freedom (DoF). These objectives aimed to minimize both the mean
squared error and the reverse correlation between the ground-truth and simulated motion. To reduce
overfitting of muscle parameters, we ran the SO-FD pipeline for both locomotion and grooming
behaviors (Figure S4). The total objective score was computed by summing the two scores for
each DoF. NSGA-II hyperparameters were empirically tuned (Table 3), and parameter search ranges
were iteratively refined based on optimization performance. The distribution of the resulting muscle
parameter values is shown in Figure S5.

Specifically, the following parameters were optimized:

• Maximum isometric force was computed as the product of a fixed base tension (from prior
experimental work), a scaling factor (optimized between 0.3–3), and the physiological
cross-sectional area (PCSA) calculated from CT scans.

• Maximum contraction velocity was defined as a base value (estimated from femur–tibia
motion videos under X-ray) scaled by a factor between 0.4 and 2.4.

• Optimal fiber length and tendon slack length were based on ratios observed in the CT data,
scaled by a factor between 0.8 and 1.2, and capped at a maximum of 95% of the total length.

• Muscle paths were allowed to vary within a cube of 5-10µm around the annotated insertion
points.
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Table 2: Millard 2013 muscle model parameters categorized by type and optimization.

Parameter Value Type Parameter Type

Optimal fiber length Anatomical Open
Tendon slack length Anatomical Open
Geometry path Anatomical Open
Max isometric force Physiological Open
Max contraction velocity Physiological Open
Activation time constant Physiological Fixed
Deactivation time constant Physiological Fixed
Ignore tendon compliance Physiological Fixed
Pennation angle at optimal Anatomical Fixed
Maximum pennation angle Anatomical Fixed
Min activation Physiological Fixed
Min control Physiological Default
Max control Physiological Default
Fiber damping Physiological Default
Active force–length curve Physiological Default
Force–velocity curve Physiological Default
Fiber force–length curve Physiological Default
Tendon force–length curve Physiological Default

Table 3: NSGA-II parameters used in optimization.

Muscles Generation Population number Mutation Cross-over
Thorax 200 120 0.7 0.5
Coxa 200 40 0.7 0.5
Femur 200 300 0.5 0.3

We applied a curriculum learning strategy to each joint using front leg kinematics during grooming
and locomotion. The warm-up stage (5–10 generations) used conservative hyperparameters to
encourage rapid convergence, followed by a fine-tuning stage (5–10 generations) that employed more
exploratory search settings. Final optimized muscle parameters were validated in the SO-FD pipeline,
and the best-performing set was mirrored to the right leg, completing the musculoskeletal model of
the front legs.

A.6 Imitation learning using PPO in MuJoCo

We trained multilayer perceptron (MLP) policies with Proximal Policy Optimization (PPO) [S10] for
15× 106 steps at a control frequency of 500 Hz, while running the physics engine at 10,000 Hz to
ensure stability. The hyperparameters used for training are listed in Table 4.

Initially, our motion capture dataset included only joint angles and velocities. To enrich this dataset,
we replayed the joint kinematics using a point-torque model and recorded all observable physical
quantities, including body positions and velocities in Cartesian space. This expanded dataset was
then used as the reference trajectory in our imitation learning experiments.

At each timestep, the agent received an observation vector comprising joint angles, 3D positions
of selected body parts (i.e., tibia-tarsus and claw), muscle states (i.e., length, velocity, activation,
and force), and the remaining time in the clip, as described in [S11]. The policy output consisted of
continuous muscle input values in the range [0, 1] for each muscle.
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Figure S4: Joint kinematics across all degrees of freedom in reference and simulated data. Joint
angle trajectories from (A) locomotion and (B) grooming behaviors are used as reference inputs
for optimizing unknown muscle parameters. The MSE and correlation between the reference and
resulting trajectories are used as objectives. The thick solid line represents the reference trajectory,
the thin solid line shows the trajectory of the best-performing individual from the optimization, and
the shaded region indicates the standard deviation across the top 10 individuals.

The reward function was designed to encourage accurate tracking of the reference motion, both in joint
space and Cartesian space. We initially tested the reward function and training setup using in a point-
torque model. Upon achieving successful performance in this simpler setting, we transitioned to the
more complex musculoskeletal model. All parameter values were selected through a hyperparameter
search.

Table 4: Key hyperparameters used for imitation learning with PPO. The same values were applied to
both the actor and critic networks.

Hyperparameter Value
Network Architecture [512, 512, 256]
Activation Function ReLU
Optimizer Adam
Learning Rate 1× 10−5

Batch Size 64
Rollout Length (nsteps) 2048
Epochs per Update 10
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Figure S5: Distribution of optimized muscle parameters. Final values for maximum contraction
velocity (top), optimal fiber length (middle), and maximum isometric force (bottom) after optimization.
Each dot represents one of the top 10 individuals selected from a total population of 200. Muscles are
grouped by segment (thorax, coxa, femur) from left to right.
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Figure S6: Muscle activation dynamics across passive joint conditions. Simulated activations of
thorax (left), coxa (middle), and femur (right) muscles in PPO agents trained with different joint
properties: (i) armature only (top), (ii) armature and damping (second), (iii) armature and damping
and stiffness (third), and (iv) armature and stiffness (bottom). Shown are rollouts from the best-
performing seed in each condition.
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