
Reverse-engineering the neural circuitry underlying 
multi-body part coordination in Drosophila
Pembe Gizem Özdil1,2, Auke Jan Ijspeert2 and Pavan Ramdya1

1Neuroengineering Laboratory; 2Biorobotics Laboratory, 
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
contact: pembe.ozdil@epfl.ch, gizemozd.github.io

References
[1] Hampel et al., 2015. A neural command circuit for grooming movement control.
[2] Mathis et al., 2018. Deeplabcut: markerless pose estimation of user-defined body parts with deep learning.
[3] Karashchuk et al., 2021. Anipose: a toolkit for robust markerless 3D pose estimation. 
[4] Dorkenwald et al., 2023. Neuronal wiring diagram of an adult brain
[5] Lappalainen et al., 2023, Connectome-constrained deep mechanistic networks predict neural responses 
across the fly visual system at single-neuron resolution

  Goal-directed movements, such as self-grooming, are ubiquitous across limbed animals. However, it remains poorly understood how these movements arise from 
an interplay between sensory feedback, central processing, and musculoskeletal dynamics. The adult fly, Drosophila melanogaster, performs goal-directed 
reaching during antennal grooming. Although some neural elements of the antennal grooming circuit have been identified [1], we lack a clear and comprehensive 
picture of how extensive brain networks coordinate multiple body parts during grooming.   

Here, we combine behavioral experiments, 3D kinematic analyses [2,3], and data-driven 
modeling using the connectome [4,5] to investigate the following questions:

• How does the brain control different body parts? 
• Which neural mechanisms drive the transition between distinct sub-behaviors?

• Antennal grooming involves the coordinated 
movements of the antennae, head, and forelegs. 

• Morphological perturbations of body-part 
movements during antennal grooming revealed that 
each body part can move independently of the other, 
suggesting an open-loop control mechanism.

• The grooming network derived from the brain con-
nectome exhibits redundancy, supporting multiple 
open-loop models. Among these, the central model 
stands out.

• Our simulations, constrained by the connectome, 
indicate that the central inhibitory neurons play an 
important role in shaping the motor output. 

• Future investigations will empirically validate the 
network predictions by selectively silencing neurons 
through genetic manipulation.
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Finally, triangulate the key point predictions to obtain 3D pose [3].
Then process these recordings to obtain 2D pose estimates [2].

Optogenetically activate antennal mechanosensory neurons [1] 
(Johnston’s Organ) to elicit antennal grooming.

Stimulating and measuring antennal grooming
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Antennal grooming requires multi-body part coordination
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Sensory feedback cannot explain multi-body part coordination

No sensory feedback perturbation could impede multi-body part coordination. 
Thus, an open-loop control mechanism is more likely to govern the movement.

The real connectivity contains the motifs from each model to varying 
extents, with the ‘central’ model having the highest correlation.

The fly controls the head, anten-
nae, and forelegs in a coordinated 

way to achieve the grooming of 
one or both antennae.
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