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Abstract1

Animals must coordinate multiple body parts to perform important tasks such2

as grooming, or locomotion. How this movement synchronization is achieved by3

the nervous system remains largely unknown. Here, we uncover the neural basis of4

body part coordination during goal-directed antennal grooming in the fly, Drosophila5

melanogaster. We find that unilateral or bilateral grooming of one or both antenna,6

respectively, arises from synchronized movements of the head, antennae, and forelegs.7

Simulated replay of these body part kinematics in a biomechanical model shows that8

this coordination makes grooming more efficient by permitting unobstructed, forceful9

collisions between the foreleg tibiae and antennae. Movements of one body part do10

not require proprioceptive sensory feedback from the others: neither amputation of11

the forelegs or antennae, nor immobilization of the head prevented movements of the12

other unperturbed body parts. By constructing a comprehensive antennal grooming13

network from the fly brain connectome, we find that centralized interneurons and14

shared premotor neurons interconnect and thus likely synchronize neck, antennal, and15

foreleg motor networks. A simulated activation screen of neurons in this network re-16

veals cell classes required for the coordination of antennal movements during unilateral17

grooming. These cells form two coupled circuit motifs that enable robust body part18

synchronization: a recurrent excitatory subnetwork that promotes contralateral anten-19

nal pitch and broadcast inhibition that suppresses ipsilateral antennal pitch. Similarly20

centralized controllers may enable the flexible co-recruitment of multiple body parts21

to subserve a variety of behaviors.22
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Introduction23

Complex animal behaviors rely upon the adept coordination of multiple body parts. For exam-24

ple, walking requires synchronized movements of each limb to efficiently move the body through25

space1,2. This coordination requires the co-activation of multiple, distinct motor networks (those26

for each moving leg) as well as the suppression of other networks (those for stabilizing the other27

legs in stance). Thus, body part coordination depends critically upon effective communication28

between neuronal populations controlling each appendage3.29

The organization of interlimb and intersegmental networks has been most extensively studied30

the context of vertebrate locomotion4–9. In rodents, inhibitory V0 commissural interneurons in31

the spinal cord regulate left-right alternation, while excitatory V0 neurons mediate left-right syn-32

chrony in a speed-dependent manner10,11. Such commissural interneurons have been identified in33

swimming and walking across species7,9,12–14, implying that these coordination mechanisms are34

evolutionarily conserved. Similarly, intersegmental interneurons have been described for insect35

locomotor coordination1,15. These advances highlight that our understanding of body part coor-36

dination remains largely limited to the identification of key cell types rather than the elucidation37

of systems-level network architectures and circuit mechanisms.38

The adult fly, Drosophila melanogaster, is an ideal experimental model for gaining both a more39

comprehensive and deep understanding of motor control. Flies generate numerous behaviors that40

require movement synchronization16–18. In addition, the fly’s brain and motor system—the ventral41

nerve cord (VNC)—have been fully mapped19–25. This enables the detailed analysis of circuit42

connectivity. Finally, extensive libraries of transgenic driver lines make it possible to genetically43

target and manipulate specific neuronal subtypes26,27.44

Here, we investigated goal-directed antennal grooming in the fly to obtain a multi-level mech-45

anistic understanding of body part coordination. Grooming is an ethologically important, evolu-46

tionarily conserved behavior comprised of precisely targeted limb movements to remove debris or47

parasites from the body28 and is performed by both mammals and insects29–33. Adult flies groom48

many different body parts—their antennae, eyes, proboscis, legs, wings, and abdomen—following49

a prioritization sequence that is governed by a suppression hierarchy18,34–36. Optogenetic neural50

activation experiments in Drosophila have identified key neurons responsible for grooming includ-51

ing peripheral sensory neurons37–39, brain interneurons40, descending neurons projecting from the52

brain to downstream VNC motor networks40–42, and interneurons within the VNC43,44 which may53

contribute to central pattern generation for limb control45. Nevertheless, the organizational logic54

of grooming kinematics and underlying motor networks remains largely unknown.55

Numerous tools and resources now allow us to overcome this gap. First, pose estimation soft-56

ware enables high-throughput 3D measurements of body kinematics46,47. Second, these kinematic57

data can be replayed in a biomechanical model of the fly to infer contact forces48–50. Third, the58

brain and VNC connectomes can be used to simulate network dynamics49,51,52. Here, we combine59

these tools and resources to uncover kinematic and neural mechanisms for body part coordina-60

tion during antennal grooming. Flies principally perform two subtypes of grooming, unilateral61

or bilateral, for cleaning one or both antennae, respectively. These are distinguished by their62

differential synchronization of head, antennae, and foreleg movements. Simulated replay of these63

kinematics in a biomechanical model shows that coordination increases grooming efficiency by64

preventing obstructions and enabling forceful foreleg-antennal collisions. Fixing the head in place65

or removing the antennae or forelegs, does not disrupt synchronization, revealing that propriocep-66

tive sensory feedback is not required. Indeed, the fly brain connectome reveals that centralized67

and shared premotor interneurons bind motor modules for these body parts. Finally, simulated68

activation and silencing of neurons in the antennal grooming network identifies coupled recurrent69

excitatory and broadcast inhibition circuit motifs that enable robust body part coordination.70
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Results71

Antennal grooming arises from coordinated movements of the head,72

antennae, and forelegs73

To precisely quantify antennal grooming, we developed an experimental system that allows us to74

measure head, antennal, and foreleg kinematics in tethered flies (Fig. 1A). We reliably elicited75

antennal grooming through bilateral optogenetic stimulation of antennal Johnston’s Organ F76

(‘JO-F’) neurons40 (aJO-GAL4-1> CsChrimson; Extended Data Fig. 1A), or by presenting77

both antennae with a brief puff of air.78

We recorded animal behavior simultaneously from five camera viewpoints46 and then used79

these videos to track 2D positions of keypoints on the antennae, neck, and forelegs53. These80

positions were then triangulated in 3D47 (Fig. 1B) and then, via sequential inverse kinematics54,81

used to compute joint angles (Fig. 1C; Supplementary Video 1). In addition to providing82

quantitative measurements of grooming movements, these joint angles could be replayed in Neu-83

roMechFly48–50, a biomechanical model of the fly (Fig. 1D; Supplementary Video 2), to infer84

contacts and forces between body parts that are otherwise challenging to measure experimentally.85

Visual inspection of our behavioral videos revealed that optogenetically-elicited antennal groom-86

ing tends to fall into two subtypes with distinct body part kinematics: (i) unilateral grooming87

of either the right (‘uniR’) or left (‘uniL’) antenna by both forelegs, or (ii) bilateral (‘biLat’)88

grooming in which each foreleg simultaneously grooms its ipsilateral antenna (Fig. 1E; Sup-89

plementary Video 3). Importantly, both subtypes were also observed in response to air-puffs90

(Supplementary Video 4), with quantitatively similar head, antenna, and foreleg kinematics91

(Extended Data Fig. 2).92

Unilateral grooming in response to optogenetic (Fig. 1F; Extended Data Fig. 1B) or93

air-puff (Extended Data Fig. 1C) stimulation is characterized by several kinematic features.94

First, the forelegs move laterally toward the targeted antenna and produce cyclical, synchronized95

leg sweeps (Fig. 1G, top). Second, the non-targeted antenna is pitched upwards around the96

mediolateral axis, possibly to avoid collisions with the legs (Fig. 1G, bottom). Third, the head97

is pitched down and rolled to the side, bringing the targeted antenna into the task space of the98

forelegs (Fig. 1G, bottom). By contrast, during bilateral grooming, the antennae do not ap-99

pear to move. As well, the head does not rotate but is instead pitched downwards, lowering both100

antennae to the work space of the forelegs. Indeed, simulated replay of these kinematics in our101

biomechanical model confirmed that, during unilateral grooming, collisions occur between both102

forelegs and the targeted antenna whereas, during bilateral grooming, each foreleg principally103

collides with its ipsilateral antenna (Fig. 1H). Thus, the kinematics of the head, antennae, and104

forelegs are differentially correlated during unilateral versus bilateral antennal grooming (Ex-105

tended Data Fig. 1D).106

We quantified the frequency of grooming subtypes by manually classifying behaviors across107

multiple flies (n=10 animals) during optogenetic stimulation (Fig. 1I). Unilateral and bilateral108

grooming are the most frequent, occurring in more than 70% of behavioral events. The remain-109

ing (<30%) behaviors could not clearly be defined as antennal grooming (e.g., leg lifting) and110

thus were labeled unclassified (‘non-class’). In other more rare instances, behaviors only par-111

tially matched unilateral coordination (‘partial uni’). We often observed that flies transitioned112

smoothly between different grooming subtypes. The most frequent transitions occurred from113

bilateral to unilateral grooming (Fig. 1J; Extended Data Fig. 1E). Importantly, our classi-114

fication of antennal grooming into unilateral and bilateral subtypes was also observed using an115

unbiased, dimensionality reduction approach. Principal component analysis (PCA) performed116

on the same head and foreleg kinematics data revealed marked subdivisions along the first two117
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principal components which explained over 40% of the variance (Extended Data Fig. 1F).118

Specifically, unilateral grooming subtypes reside on either side of a central space filled by bilat-119

eral and non-classified subtypes (Fig. 1K). Strikingly, features observed during each grooming120

subtype were evident in time-series data from these first two principal components. The first121

principal component resembles unilateral grooming: the left and right tibia-tarsus joints are po-122

sitioned laterally on one side of the midline, the left and right antennae are pitched in opposite123

directions, and there is a low degree of head pitch when head roll angles are larger (Fig. 1L).124

Consistent with this, uniR and uniL are found on opposite (negative versus positive) sides of125

this first principal component (Fig. 1K). Kinematics in the second principal component were126

reminiscent of bilateral grooming: the tibia-tarsus joints are symmetrically on opposite sides of127

the midline, antennal pitch angles are similar, and although head roll is nearly zero, head pitch is128

large (Fig. 1M). Indeed, bilateral and non-classified grooming are distributed along this second129

principal component axis (Fig. 1K).130

The synchronization of body part movements during antennal grooming can also be quantified131

as a systematic correlation of their kinematics over time (Extended Data Fig. 1D). To rule132

out the possibility that these correlations trivially arise from the displacement of the head and133

antennae by forceful contact with the forelegs, we optogenetically elicited antennal grooming134

in animals with their forelegs amputated. There we observed similar head/antennal kinematics135

reflected in overlapping spatial occupancies (Extended Data Fig. 3). Thus, the head, antennae,136

and forelegs appear to be actively coordinated.137

Body part coordination improves grooming efficiency138

Having observed stereotypically synchronized head, antennal, and foreleg movements during an-139

tennal grooming, we next asked to what extent this coordination increases grooming efficiency by140

facilitating contacts between the forelegs and antennae. For example, we hypothesized that during141

unilateral grooming of the left antenna: (i) leftward roll of the head might bring the left antenna142

closer to the forelegs, (ii) upward pitch of the non-targeted right antenna might prevent contact143

with forelegs, and (iii) leftward shift of the forelegs might facilitate contact with the targeted left144

antenna.145

Testing these hypotheses experimentally would require measuring foreleg-antennal contacts146

while perturbing single degrees of freedom (e.g., by eliminating head pitch without affecting head147

roll). Such experiments are currently not technically feasible—we lack both a means of measuring148

body part contacts as well as the ability to genetically perturb motor neurons driving individual149

antennal and neck degrees of freedom. Therefore, we performed perturbation experiments in Neu-150

roMechFly48–50. Specifically, we replayed real, recorded body part kinematics in our simulation151

while measuring collisions and forces between the antennae and forelegs. We repeated this exper-152

iment while systematically modulating the amplitude of individual degrees of freedom—forward153

head pitch, sideways head roll, or upward pitch of the non-targeted antenna.154

We first investigated the importance of downward head pitch during bilateral grooming. We155

replayed measured kinematics and quantified antenna-leg collisions from real data (‘gain = 1’,156

Fig. 2A, top), or while virtually fixing the head in its rest position (‘gain = 0’, Fig. 2A,157

bottom). Compared with our real data (Fig. 2B, top), when the head was fixed in place we158

observed that the leg segments in contact with the antennae shifted from the tibiae to the more159

distal tarsi (Fig. 2B, bottom; Supplementary Video 5, left). By systematically performing160

this experiment using kinematic data from multiple animals with substantial head pitch (median161

greater than 14 degrees) but minimal head roll (Extended Data Fig. 4A) we confirmed that162

larger head pitch results in increased tibia-antenna contact (Fig. 2C, left) and decreased tarsus-163

antenna contact (Fig. 2C, right). Thus, downward head pitch during bilateral antennal grooming164

Özdil et al. 4 | 64



may serve to maximize contact between the fly’s foreleg tibia and antennae. Why might flies165

prioritize tibial contact with the antennae? One possibility is that the tibiae may exert more force166

on the antenna compared with the more compliant tarsi—a thinner multi-segmented structure167

with numerous passive joints. Consistent with this, even though our simulated tarsi are less168

compliant than real tarsi, they nevertheless exert less force on the antennae, on average, than the169

tibiae do (Extended Data Fig. 4B,C).170

During unilateral grooming, flies roll their heads to the side, lowering the targeted antenna.171

Similar to head pitch during bilateral grooming, we hypothesized that this head roll might bring172

the targeted antenna into the task space of the legs, while positioning the non-targeted antenna173

further away. To test this, we replayed unilateral grooming in our simulation while modulating174

the amplitude of head roll. Indeed, collision diagrams show that during, for example, unilateral175

left antennal grooming, compared with intact head roll (gain=1, orange epochs Fig. 2D-E, top)176

when head roll is suppressed, there is increased contact between the right leg and the non-targeted,177

right antenna (gain=0, blue periods Fig. 2D-E, bottom; Supplementary Video 5, middle).178

Using kinematic data from multiple flies during unilateral grooming with appreciable head roll179

(median more than 8 degrees) (Extended Data Fig. 4D), we confirmed that suppressing head180

roll results in (i) a shift from contact with the ipsilateral tibia to the more distal tarsus (Fig. 2F,181

left) as well as (ii) an increase in collisions between the non-targeted antenna and its ipsilateral182

tibia (Fig. 2F, right). Thus, head roll appears to bring the targeted antenna toward and the183

non-targeted antenna away from the task space of the foreleg tibiae.184

Finally, we asked whether upward pitch of the non-targeted antenna facilitates unilateral185

grooming by allowing the fly to avoid undesired leg collisions. Because in our real experiments186

antennal poses were often obstructed during leg-antenna interactions, direct replay of real antennal187

joint angles was not possible. Therefore, we instead set the antennal pitch degree of freedom to a188

constant value ranging from 0◦ to 60◦ in increments of 5◦—a range of angles that resembles those189

measured from real flies (Extended Data Fig. 4D). We found that when the non-targeted190

antenna was pitched upward (angle 60◦) both tibiae principally contact the targeted antenna191

(orange, Fig. 2G-H, top). However, when the non-targeted antenna remains in its resting192

position (angle 10◦) it obstructs the ipsilateral tibia, reducing contact with the targeted antenna193

(Fig. 2G-H, bottom; Supplementary Video 5, right). This was consistent across multiple194

animals and grooming epochs: suppressing upward pitch of the non-targeted antenna reduces195

grooming of the targeted antenna by the contralateral tibia (Fig. 2I, left) due to increased196

collisions with the non-targeted antenna (Fig. 2I, right).197

Thus, head and antennal movements during grooming appear to optimize tibial contact with198

the targeted antenna(e) by (i) bringing the targeted antenna into the foreleg task space via199

downward head pitch or sideways head roll and (ii) preventing collisions between the legs and200

non-targeted antenna via sideways head roll and upward pitch of the non-targeted antenna. Next,201

we sought to decipher the neural mechanisms underlying this tripartite coordination of body parts202

during unilateral antennal grooming.203

Multi-body part synchronization does not rely on proprioceptive feed-204

back205

The synchronous activation of motor networks for the head, antenna, and forelegs during unilateral206

grooming can arise from several potential control frameworks. First, in a ‘sensory feedback’207

framework, movements of one body part (e.g., the head) may generate proprioceptive signals that208

initiate and/or maintain motor programs for the other two body parts (e.g., the antenna and209

forelegs) (Fig. 3A). Within this framework, we can envisage three means of yielding tripartite210

coordination of the head, antennae, and legs: (i) proprioceptive feedback from moving one body211
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part could drive movements of a second whose proprioceptive feedback would in turn drive a third212

(‘cascading coordination’), (ii) proprioceptive feedback from two moving body parts may both be213

needed to drive movements of a third (‘additive coordination’), or (iii) proprioceptive feedback214

from one moving body part may drive movements of the other two (‘diverging coordination’)215

(Extended Data Fig. 5). In an alternative framework, proprioceptive feedback-independent or216

‘open-loop’ mechanisms might underlie synchronous movements of the head, antennae, and legs217

(Fig. 3B). Open-loop models can be classified based on the origin of movement synchronization in218

the brain’s sensorimotor pathway: it may arise at the sensory layer of JO neurons (‘input shared’),219

via an ensemble of central neurons (‘central hub’), or as a consequence of intercommunicating220

motor modules (‘output shared’).221

We first aimed to distinguish between proprioceptive sensory feedback versus open-loop control222

frameworks. To do so, we measured antennal grooming in flies both before and after body part223

manipulations intended to eliminate proprioceptive sensory feedback: foreleg amputation, anten-224

nal amputation, and/or head fixation (Fig. 3C). Additionally, to test additive feedback models225

we simultaneously perturbed two body parts (e.g., amputating the forelegs and immobilizing the226

head). In total, we tested six perturbations: (i) fixation of the head (Fig. 3D), (ii) amputation227

of the forelegs (Fig. 3F), (iii) amputation of the antennae (Fig. 3H), (iv) head fixation and228

foreleg amputation (Fig. 3J), (v) antennal and foreleg amputation (Fig. 3L), and (vi) antennal229

amputation and head fixation (Fig. 3N). To quantify the impact of perturbing one body part,230

we investigated the kinematics of the remaining two intact body parts. For example, we exam-231

ined which antenna the forelegs reach laterally towards while the fly pitches one antenna upward232

(Fig. 3E, top). We observed that flies preserve their leg and antenna coordination pattern follow-233

ing head immobilization (Fig. 3E, bottom; Supplementary Video 6). Although we measured234

minor changes in foreleg trajectories, particularly in the proximal leg joints, (Extended Data235

Fig. 6), this is likely because flies have more room to move when the head is fixed and not pitched236

downward. Similarly, amputation of the forelegs did not alter the relationship between head roll237

and antennal pitch during unilateral grooming (Fig. 3G; Supplementary Video 7). Finally,238

after antennal amputation, we observed that the lateral position of the forelegs still tracked the239

direction of head rotation (Fig. 3I; Supplementary Video 8).240

Next, we perturbed two body parts simultaneously and measured the movement range of the241

remaining body part. In foreleg amputated and head-fixed flies without significant neck and leg242

proprioceptive sensory feedback, we found that flies still actively lift their antenna (Fig. 3K;243

Supplementary Video 9). We note that in intact flies the forelegs push the antenna closer to244

the head, reducing antennal pitch angles. As well, after both foreleg and antennal amputations,245

we observed that the head still rolls in both directions (Fig. 3M; Supplementary Video 10).246

Finally, amputating the antennae and fixing the head in place did not disrupt lateral movements247

of the forelegs (Fig. 3O; Supplementary Video 11).248

Because no perturbation significantly altered the coordinated movements of intact body parts,249

we conclude that proprioceptive sensory feedback is not required for head, antennae, and leg250

movement synchronization during antennal grooming. Other, open-loop control mechanisms are251

thus more likely at play.252

A centralized brain network links multiple motor modules253

To evaluate potential open-loop control models for body part synchronization, we extended our254

‘input’, ‘central’, and ‘output’ models to include real neuronal subtypes including sensory inputs,255

interneurons, and motor modules (i.e., premotor neurons and their target motor neurons moving256

a specific body part). In this extended ‘open-loop’ framework we could envision at least four257

different neural network architectures that might enable the synchronization of head, antenna,258
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and foreleg movements: via (i) shared antennal Johnston’s Organ sensory input (‘input shared’),259

(ii) common input from central interneurons controlling premotor-motor modules (‘central hub’),260

(iii) coupling between premotor circuits for each body part (‘premotor coupling’), or (iv) shared261

premotor circuits for multiple body parts (‘shared premotor’) (Fig. 4A).262

To investigate the degree to which these network architectures might underlie open-loop coor-263

dination, we used the adult female whole-brain connectome19–21,55 to construct a comprehensive264

network of antennal grooming-related neurons. We began with neurons that had previously been265

described as involved in antennal grooming. These included sensory neurons like the antennal266

Johnston’s Organ (‘JO’ C-E-F)37,40 and mechanosensory bristles39, brain interneurons (aBN1,2,3),267

and descending neurons (aDN1,2,3)40 (Fig. 4B). To these we added antennal and neck motor268

neurons, enabling us to define the motor modules for these body parts. Then, we systematically269

incorporated neurons monosynaptically connected to any of these seed neurons (Extended Data270

Fig. 7A) with synaptic connections to the seed network exceeding a threshold defined by a pa-271

rameter sweep (Extended Data Fig. 7B), and informed by previous work20. This threshold272

excluded extraneous neurons with little information flow to or from antennal grooming neurons273

while still retaining a broad range of neuron types (Extended Data Fig. 7C).274

Our final antennal grooming network consists of 827 neurons with sparse connectivity (2195275

connected neuron pairs or 0.3% sparsity) (Fig. 4C-E). Of these connections ∼31% are contralat-276

eral across brain hemispheres. Although ∼77% of neurons are excitatory, they contribute only277

∼55% of synapses (Fig. 4F). Thus, on average, inhibitory neurons contribute proportionally more278

synapses to this network, consistent with previous findings56. Additionally, we observed high de-279

gree distributions among inhibitory interneurons (Extended Data Fig. 7D, circled in black),280

and the excitatory aBN1, suggesting that these neurons may influence network dynamics on a281

global scale.282

To test the relative match to our different open-loop control models (Fig. 4A), we next283

categorized interneurons as being either central or premotor. Neurons were defined as ‘central’284

if they lay on the path (on average with more than 5% of synaptic inputs) from ‘JO-F’ sensory285

inputs to motor neurons within five hops56 (Fig. 4G). From this group of ‘central neurons’ we286

then reclassified as ‘premotor neurons’ those with at least 5% of their outputs directly targeting287

motor neurons controlling the antennae or neck (Fig. 4G).288

Ultimately, our approach classified neurons in our antennal grooming network into four ma-289

jor groups: sensory (JO-F), central, premotor (antennal, neck, foreleg, or shared), and motor290

(antennal or neck). We used a signal flow sorting algorithm57 to measure the extent to which291

information flows in a feedforward manner in this network. This algorithm scores each node in292

the graph based on its proximity to the input and output. Signal flow scores across nodes in293

our neuron groups (Extended Data Fig. 7E), exhibited a clear gradient in which, as expected,294

sensory JO-F neurons were situated closest to the input, followed by central, premotor, and finally295

motor neurons near the output (Fig. 4H). We next asked to what degree neurons form feedback296

connections to preceding layers. Specifically, we divided the signal flow axis into nine layers to297

get sufficiently many (∼ 40) neurons per layer. Then we examined the connectivity between298

neurons in each layer by summing the number of synapses made between each neuron pair. For299

both excitatory and inhibitory connections, we found that the grooming network is predominantly300

feedforward (gray), with some feedback (orange) connections enriched near sensory layers 2 and301

3 (Fig. 4I). We speculate that this feedback might reflect presynaptic inhibition upon sensory302

inputs58.303

Close examination of our network’s connectivity matrix appears to immediately exclude two304

open-loop models (Fig. 4J-K; Extended Data Fig. 8). First, JO-F neurons connect only mini-305

mally to premotor and motor neurons. Therefore, sensory input does not appear to directly drive306

synchrony across motor modules (Fig. 4A, ‘input shared’ model). Second, premotor modules307
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do not appear to be connected strongly to one another (Fig. 4A, ‘premotor coupling’ model).308

By contrast, we observe strong connectivity between central and premotor neurons (Fig. 4J-309

K) whereby individual central neurons project onto shared premotor or multiple categories of310

premotor neurons (Extended Data Fig. 7F). This finding supports the ‘central hub’ model.311

Similarly, there exist common premotor neurons which target multiple groups of motor neurons312

(Fig. 4J-K), consistent with our ‘shared premotor’ model. However, shared premotor neurons313

contribute only ∼42% and ∼26% of synapses to neck and antennal motor neurons, respectively314

(Fig. 4L-M). As well, in the VNC some shared premotor neurons project to both neck and315

foreleg motor neurons (Extended Data Fig. 7G). Interestingly, within the VNC, the axons of316

descending neuron arising from the brain represent the largest fraction of shared (rather than317

foreleg- or neck-specific) premotor neurons (Extended Data Fig. 7H). This suggests that brain318

networks may also be principally responsible for directly coordinating leg and neck movements319

within the VNC.320

In sum, our findings indicate that central interneurons, with a smaller contribution from shared321

premotor circuits, are best positioned to coordinate antennal, neck, and leg motor modules. Corre-322

lation analyses with randomized adjacency matrices confirm that the real network’s configuration323

is highly non-random (Fig. 4N). More specifically, comparing the real connectome network with324

randomized versions of this network (Extended Data Fig. 9A-B) shows that the proportion of325

connections in the ‘central’ and ‘shared premotor’ models is significantly greater than expected by326

chance (Extended Data Fig. 9C, purple and gray boxes). As well, connections associated with327

the ‘input-shared’ and ‘premotor coupling’ models are significantly lower or not statistically differ-328

ent than that expected by chance aside from antennal premotor to foreleg premotor connectivity329

(Extended Data Fig. 9C, dark blue and orange boxes).330

Simulating a connectome-derived antennal grooming network331

Connectivity analysis revealed that central neurons likely coordinate the activity of head, anten-332

nae, and foreleg motor modules. However, static connectivity information alone is insufficient to333

understand the contributions of individual neurons and circuit motifs to behavioral dynamics. For334

example, instead of forming a continuous gradient of behavioral subtypes, behavioral responses335

tended to be either unilateral, or bilateral. This pattern suggests that the antennal grooming336

network may operate using winner-take-all action selection, a process whose study requires inves-337

tigating the temporal evolution of neural activity. Therefore, to explore how our network might338

drive this selection process, we simulated its dynamics.339

Specifically, we built a connectome-derived artificial neural network, in which each neuron is340

modeled as a leaky integrator59 (see Methods ). We optimized network parameters to generate341

outputs that matched a training dataset consisting of head and antennal kinematics from flies342

(n=10 animals) whose JO-F neurons were stimulated with diverse optogenetic patterns including343

steps of varying duration, and pulses of varying frequency (Fig. 5A, left). To keep sensory input344

well-defined, these animals’ forelegs were amputated (Fig. 5A, middle). This allowed us to (i)345

prevent leg-antennal contact during grooming and thereby limit mechanosensory feedback from the346

head39 and forelegs60, as well as (ii) reduce the importance of ascending leg proprioceptive sensory347

feedback61. Importantly, our previous amputation experiments (Fig. 3) demonstrated that head348

and antennal coordination can occur even in the absence of the forelegs. From these video data349

we computed head and antennal kinematics (Fig. 5A, right; Extended Data Fig. 10A) as350

target outputs for our network to replicate during simulations.351

Due to imperfections in connectome data acquisition and reconstruction as well as real biolog-352

ical variation, there are differences in connectivity across the left and right brain hemispheres20,62353

(see Extended Data Fig. 12 and Discussion). This might introduce spurious, artifactual asym-354
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metries in network simulations. Therefore, to minimize the inductive biases stemming from this355

asymmetry, we made our network bilaterally symmetric. We symmetrized the adjacency matrix356

by setting the synaptic values for each connection to the maximum among each bilateral pair of357

neurons (Extended Data Fig. 10B; see Extended Data Fig. 10C to compare results using358

different methods). Consequently, each paired neuron has bilaterally-symmetric pre- and post-359

synaptic neighbors as well as an equal number of synapses in both hemispheres. Having prepared360

our network in this way, we next trained it to reproduce measured antennal and head kinematics361

in response to virtual optogenetic stimulation of JO-F neurons (Fig. 5C). The mechanosensory362

JO-C/E neurons also received a fictive sensory feedback: antennal kinematics with a sensorimotor363

delay of 40ms63,64. We read out motor neuron activities from five pairs of antennal and four pairs364

of neck pitch motor neurons in the brain65 but excluded neck roll motor neurons because they365

have not been identified in the brain connectome. Motor neuron activities were then fed into two366

separate decoders, encapsulating antennal and neck musculoskeletal systems, which output fictive367

antennal and head pitch joint angles (Fig. 5C). As in previous connectome-constrained model-368

ing work51, the edges of this network and each neuron’s neurotransmitter identity were fixed as369

they are in the brain connectome19–21,66. However, neuronal parameters including the membrane370

time constants, resting potentials, synaptic strengths, and decoder parameters were optimized via371

backpropagation through time (BPTT)67 to match our training dataset. We performed training372

across thirty random seeds and confirmed convergence in all cases to small loss values (Fig. 5D).373

We next analyzed neural dynamics in our trained models. To focus on the winner-take-374

all aspect of unilateral grooming, we presented slightly asymmetric JO-F input (left antenna375

input slightly exceeding the right) and examined which neurons are driven to purely right or left376

activation. We devised a metric, the unilateral selectivity index (USI), for each bilateral neuron377

or cluster pair by measuring the area under the response curves for the left and right hemispheres,378

and then computing their difference as a fraction of the total area (Fig. 5E). Thus, a USI of one379

indicates fully right-dominant activity (contralateral to the more stimulated left antenna), while380

a USI of negative one indicates fully left-dominant activity (ipsilateral to the more stimulated381

left antenna). Intuitively, a USI of one is analogous to unilateral left grooming in which the right382

(non-targeted) antenna lifts in response to stimulation of the left (targeted) antenna to avoid383

collisions with the forelegs (Fig. 1E, left). We applied this metric to key antennal grooming384

neurons (e.g., aBNs, aDNs, and aMNs) with asymmetric JO-F input (left > right) and observed385

consensus across thirty models on the responses of each neuron class (Fig. 5F). Among the five386

motor neurons, only aMN4 consistently exhibited a contralateral response (Fig. 5G; Extended387

Data Fig. 10D for an exemplary model), suggesting that aMN4 may drive upward antennal388

pitch of the non-targeted antenna during unilateral grooming.389

Coupled circuit motifs enable robust unilateral coordination390

Having generated a connectome-derived model of the antennal grooming network, we next set out391

to identify circuit motifs that may underlie body part coordination during unilateral grooming.392

We focused our analysis on antennal pitch coordination: upward pitch of the contralateral, non-393

targeted antenna and quiescence of the targeted antenna. We studied antennal movements for394

several reasons. First, upward pitch of the non-targeted antenna is a hallmark of unilateral395

grooming that is synchronous with head roll and lateral foreleg movements (Fig. 1E). Second,396

unlike neck and leg motor neurons, antennal motor neurons are located exclusively in the fully397

mapped brain. Third, these motor neurons are a compact and tractable system for analysis: only398

five motor neurons control four muscles in each antenna68, compared with the numerous neurons399

and muscles controlling the neck65 and forelegs24.400

The precise roles of individual antennal motor neurons have not been fully established. There-401
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fore, because in six models aMN4 neurons consistently exhibited contralateral responses to asym-402

metric JO-F input (models 10, 11, 13, 16, 22, and 23; dark green rectangles in the aMN4 row403

in Fig. 5F), we used the activities of aMN4 motor neurons in these models as a readout. In404

combination with neural perturbations, this readout allowed us to identify neurons and circuits405

that encourage exclusively upward pitch of the non-targeted, contralateral antenna in response to406

bilaterally asymmetric JO-F input. Indeed, aMN4 activity closely reflected this action selection407

process; when systematically testing a range of left-right JO-F input current pairs, we found that408

even slight input asymmetries nevertheless result in fully unilateral aMN4 responses (Fig. 6A).409

To investigate the neural mechanisms underlying this winner-take-all response, we focused on410

three models with the most biologically relevant characteristics: fully unilateral aMN4 activity411

during slightly asymmetric JO-F input as well as no aMN4 activity during bilaterally symmetric412

JO-F input (akin to no antennal pitch during bilateral grooming) (Fig. 6B–C; see Extended413

Data Fig. 11A-B for the other three models).414

We reasoned that central circuits promoting unilateral pitch might be identified by their ability415

to drive asymmetric network activity in the presence of equal JO-F sensory input to both antennae.416

Therefore, in a first neural activation screen, we provided bilaterally symmetric JO-F input and417

simultaneously activated individual neurons/clusters in the left hemisphere (Fig. 6D, top). In a418

second, complementary neural silencing screen, we presented asymmetric JO-F input (left > right)419

to drive unilateral aMN4 responses. Simultaneously we systematically silenced bilateral pairs of420

neurons/clusters to identify those necessary for driving the selection of unilateral antennal pitch421

(i.e., unilateral aMN4 responses) (Fig. 6D, bottom).422

Our neural activation screen uncovered eighteen neurons/clusters whose unilateral activation423

could drive aMN4 activity, during bilaterally symmetric JO-F stimulation. These produced either424

higher contralateral (Fig. 6E, green outlines: aBN1,2, aDN1, DN52, c4, c5, c35, c62, c39, c40,425

c42), or ipsilateral (Fig. 6E, gray outlines: WED, c6, c49, c58, 12A-DN33, c23) responses.426

Notably, when perturbed in the neural silencing screen, not all of these neurons/clusters had an427

impact (Fig. 6F). This may be due to redundancy in the network or inactivity during JO-F428

stimulation in the unperturbed network. It is also worth noting that, across all seeds, silenc-429

ing the inhibitory neurons/clusters WED and c6 also more globally amplified network activity430

(Supplementary Video 12) (Fig. 6F, bottom).431

We observed that, although our primary focus was on antennal motor control, activation screen432

hits were not exclusively antennal premotor neurons/clusters (see Extended Data Fig. 11C for433

all aMN4 premotor neurons) and showed similar neural responses to JO-F stimuli across seeds434

(Extended Data Fig. 11D). We found numerous hits that could be categorized as central,435

shared premotor, neck premotor, and leg premotor (Fig. 6G). Thus, we hypothesized that hits436

may contribute to circuits performing motor coordination more broadly. To test this hypothesis,437

we bundled two groups of activation hits based on whether they tipped the balance towards driving438

contralateral or ipsilateral aMN4 activity. Remarkably, this simple bundling yielded several well-439

connected circuit motifs (Fig. 6H-I).440

The first motif consists of a circuit dominated by recurrent excitation between aBN1, aBN2,441

aDN1, c4, c5, c35, c39, c40, and c42 (Fig. 6H). The majority of these neurons/clusters are directly442

downstream of JO-F neurons (Fig. 6H, nodes in blue). Thus, we envision that this circuit may443

amplify small biases in JO-F input. As well, models predict that activating any neuron/cluster444

within this circuit may robustly recruit the majority of the network, drive the activity of premotor445

neurons c39 and c42, and elicit a fully unilateral response from contralateral aMN4s (Extended446

Data Fig. 11E) to drive upward pitch of the non-targeted antenna. This group also includes447

two inhibitory neurons: DN52 and c62 (Fig. 6E). We did not include them in the motif because448

they are normally inactive during JO-F stimulation (Supplementary Video 13). However,449

they may be uncovered in the activation screen as encouraging contralateral aMN4 activation450
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because they suppress their contralateral excitatory cluster, c40, which is involved in ipsilateral451

aMN4 activation. Therefore, rather than directly exciting the contralateral aMN4 and pitching452

the non-targeted antenna, DN52 and c62 indirectly inhibit the ipsilateral aMN4 and movements453

of the targeted antenna (Extended Data Fig. 11F).454

Next we focused on neurons/clusters in the unilateral activation screen which drove responses455

in the ipsilateral aMN4. Among the seven neurons/clusters identified, two inhibitory clusters,456

WED and c6, reduce ipsilateral JO-F activity via presynaptic inhibition (Extended Data457

Fig. 11G). Their activation creates input asymmetry by suppressing sensory input from ipsilat-458

eral JO-F neurons (Extended Data Fig. 11H). However, the remaining five neurons/clusters459

appear to engage the inhibitory neuron, c23 (‘asteriod’69). c23 inhibits its ipsilateral recurrent ex-460

citatory circuit (‘EC’) and c40. The latter cluster acts as a bridge between the two motifs in that461

it receives strong excitatory input from EC and, in turn, excites the contralateral c23 (Fig. 6I).462

Additionally, c23 directly inhibits the targeted antenna’s aMN4. Interestingly, c23 neurons across463

the brain also reciprocally inhibit one another, a competitive inhibition motif commonly associ-464

ated with decision-making and action selection70–77. Finally, other neurons in this motif include465

the leg premotor cluster c58, the neck premotor cluster c64—which is normally inactive during466

JO-F stimulation (Supplementary Video 13)—and the shared premotor cluster 12A-DN33.467

These neurons receive excitatory input from the contralateral EC and activate their ipsilateral468

c23 either directly or indirectly (Fig. 6I), highlighting the central role of c23-based broadcast469

inhibition.470

Thus, our connectome-derived network neural activation screen has uncovered two intercon-471

nected motifs that likely mediate winner-take-all unilateral antennal pitch in response to sym-472

metric or only slightly asymmetric JO-F stimulation: (i) a recurrent excitatory circuit (EC) that473

encourages and maximizes contralateral aMN4 activity and non-targeted antennal pitch, as well474

as (ii) EC/c40-based activation of the contralateral broadcast inhibitor c23 which suppresses the475

contralateral EC and movements of the targeted antenna. Taken together, these findings illus-476

trate how both excitatory and inhibitory motifs can be combined to more robustly drive network477

activity into one of two discrete unilateral grooming states (Fig. 6J).478

Discussion479

Here, we have combined behavioral quantification and perturbations, biomechanical simulations,480

connectome analysis, and connectome-derived artificial neural network simulations to investigate481

how the adult fly, Drosophila melanogaster, synchronizes head, antennae, and foreleg movements482

during antennal grooming. We found that this tripartite coordination does not rely on propri-483

oceptive sensory feedback from individual body parts but appears to be driven by a centralized484

network of interneurons and shared premotor neurons. Embedded within this network, we discov-485

ered coupled recurrent excitation and broadcast inhibition circuit motifs which drive the unilateral486

selection to pitch upward the non-targeted antenna while suppressing similar movements of the487

targeted/groomed antenna.488

The utility of coordinating multiple body parts during grooming489

Why might it be beneficial for the fly to coordinate head, antennae, and forelegs movements490

while grooming its antenna? Simulated kinematic replay in a biomechanical model suggests that491

this body part synchronization facilitates unobstructed and more forceful tibial rather than tarsal492

contact with the antennae. In line with this, we have observed that flies often retract their493

antennae towards their head during bilateral grooming, possibly to increase the stiffness of the494

scape-pedicel joint and stabilize the antenna. In addition, we speculate that brushing one antenna495
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with both forelegs may be more effective in removing debris because it contacts areas that the496

ipsilateral leg alone cannot reach. It also allows for greater forces to be applied to the antenna.497

Complex hair-like structures on the tibial segments may also act as a brush to improve debris498

cleaning and, thus, improve olfactory sensing78,79. Finally, because the neuromuscular system499

controlling the tibia is more complex than the tarsal control system24,80, this strategy maximizing500

tibia-antenna contact may benefit from more precise leg positioning.501

Proprioceptive sensory feedback is not required for body part coordination502

A longstanding question in motor control has been the extent to which body part coordination503

arises from sensory feedback versus feedforward centralized control1,5. In some cases, movements504

are primarily driven by sensory feedback81,82, while in others centrally generated motor patterns505

remain intact even without input from leg mechanosensors83,84. In walking flies, mechanosensory506

feedback does not contribute strongly to interleg coordination but is important for precise foot507

placement85,86. However, unlike locomotion in which the legs are mechanically coupled to one508

another through the substrate, there is no such mechanical coupling between the head, antennae,509

and legs during grooming. This might suggest that accurate grooming must rely on ongoing510

proprioceptive feedback to precisely position the body parts with respect to one another. Surpris-511

ingly, we found that Drosophila antennal grooming does not require proprioceptive feedback to512

initiate body part coordination. This is consistent with previous studies of head grooming in other513

insects87. We speculate that the unimportance of proprioceptive feedback during grooming may514

be acceptable because imperfect coordination does not pose an existential threat. As a result, a515

simpler centralized control strategy may eliminate the computational and energy costs associated516

with continuously processing sensory feedback.517

Centralized networks may enable flexible coordination518

Within the open-loop grooming control framework, we observed that motor modules are primarily519

interconnected by central interneurons, rather than by inputs (i.e., JO sensory neurons) or outputs520

(i.e., premotor neurons). This configuration may best balance the needs for robust yet flexible521

coordination. We speculate that if motor modules were all directly targeted by JO sensory inputs522

they might be able to generate fast and reliable coordinated movements—something that would523

be desired for an escape response. However, this configuration would impede the independent524

and flexible control of individual body parts because the control signal stems from a single shared525

source. Furthermore, any input noise or perturbation would directly propagate to downstream526

motor networks. Similarly, if motor modules were connected near the output layer we might527

observe slower but similarly inflexible coordination: the movements of multiple body parts would528

be inextricably yoked together. Therefore, coupling motor modules at a central layer (i) offers529

multiple entry points to drive grooming (e.g., JO or bristle stimulation), (ii) allows behaviors to be530

more readily gated by internal state, and (iii) still enables the independent control of constituent531

body parts for different purposes (e.g., head pitch for gaze stabilization). We speculate that in this532

way centralized coordination may simplify the evolution of new behaviors through the coupling533

or uncoupling of motor modules.534

This centralized coordination mechanism may be conserved across species in different con-535

texts. Rodents also self-groom using similar kinematics including cyclical forelimb movements536

and downward head pitch29. In rats, the brainstem is both necessary and sufficient to execute a537

complete sequence of self-grooming88,89. Most of our antennal grooming network is located in the538

fly’s gnathal ganglia, a brain region that has been compared to the vertebrate brainstem90.539
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Inductive bias in the brain connectome and idiosyncratic behavior540

Previous studies have shown that fruit flies exhibit individual preferences in walking handed-541

ness91,92 as well as olfactory93 and phototactic94 decision-making. Recent modeling work has542

suggested that slight variations in synaptic connectivity might account for these idiosyncratic be-543

haviors95,96. Notably, structural asymmetries exist even among fully reconstructed and proofread544

neurons in the fly brain connectome19,20. We hypothesize that these asymmetries might explain545

why we observe some flies consistently initiating unilateral grooming of the same antenna across546

trials, even during bilaterally symmetric optogenetic stimulation.547

To investigate whether structural asymmetries in the connectome could drive grooming prefer-548

ences in response to bilaterally symmetric JO-F input, we trained the original, non-symmetrized549

network. Indeed, the original network exhibited a strong and consistent bias toward unilater-550

ally activating key antennal grooming neurons despite bilaterally symmetric JO-F stimulation551

(Extended Data Fig. 12A, left). For example, among the antennal motor neurons, aMN5552

consistently showed rightward selectivity, whereas aMN1, aMN2, and aMN4 exhibited a bias553

to the left (Extended Data Fig. 12B). This bias disappeared when the network was sym-554

metrized (Extended Data Fig. 12A, right). Although experimental variability could partially555

be attributed to genetic factors, such as differences in CsChrimson expression levels, our findings556

support the possibility that asymmetries in brain connectivity may contribute to idiosyncratic557

behavioral preferences.558
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Fig. 1: Kinematic analysis reveals two major subtypes of Drosophila antennal grooming.
See Figure Legend on next page.
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Fig. 1: Kinematic analysis reveals two major subtypes of Drosophila antennal grooming.
(A) Schematic of the experimental system used to optogenetically-elicit and record antennal grooming
(not to scale). The behavior of a tethered fly on a spherical treadmill is captured by five cameras with
different view angles. Video recordings are then used to measure 2D poses. A 617 nm LED light is used
to activate CsChrimson expressed in antennal Johnston’s Organs. A separate device can deliver air puffs
to the fly’s antennae. (B) Tracked 2D keypoints from each camera are then triangulated to reconstruct
3D poses. Shown is a schematic of the 3D pose coordinate system used to track kinematics, where the
x-axis is anteroposterior, the y-axis is mediolateral, and the z-axis is dorsoventral. Arrows specify the
positive and negative directions along each axis. Body parts are color-coded. (C) From the 3D poses, we
use inverse kinematics to calculate joint angles for the neck, antennae, and forelegs. (D) Joint angles are
used to control joint actuators in NeuroMechFly, a physics-based simulation of the adult fly. Collision
bodies (left) can be used to quantify the contact forces (right) between the antennae and forelegs. (E)
Front camera images overlaid with color-coded ‘bones’ of the legs (blue/right, orange/left) and antennae
(light blue/right, light orange/left). Illustrated are two antennal grooming subtypes: unilateral left
(‘uniL’) and bilateral (‘biLat’) across panels E-H. Head and antennal movements are schematized (white
arrows). (F) Visualization of sample 3D kinematic trajectories of the base and tip of the antennae as
well as the tibia-tarsus joints of the forelegs during antennal grooming. Joints are color-coded as in
panel E. (G, top) Mediolateral positions of the tibia-tarsus leg joints. Positive values represent the left
side in fly-centric coordinates. Joints are color-coded as in panel E. (G, bottom) Head and antennal
degree of freedom angles. For head roll, positive values are leftward. For head pitch, negative values are
downward. For antennal pitch, positive values are upward. (H) Contact diagrams inferred from collisions
between the foreleg segments and the antennae. This was derived using kinematic replay of joint angles
in NeuroMechFly. Asterisks mark the occurrence of each corresponding antennal grooming subtype. (I)
Percentage of time spent performing each class of optogenetically-elicited antennal grooming. Each circle
represents a biological replicate (n=10, N=33). Error bars show mean and 95% confidence intervals. (J)
Antennal grooming classes visualized in a graph network where each arrow represents transitions from
one class to another. Darker and thicker arrows represent a higher frequency of state transitions. Color
coding as in panel I. (K) Reduced dimensionality representation of antennal grooming kinematics. Each
dot represents a 100 ms epoch of 3D positions of antennal key points and foreleg tibia-tarsus joints
(only along the y and z axes); head roll&pitch, antennal pitch, and some leg joint angles (i.e., ThC roll,
pitch; CTr roll, pitch). Epochs are color-coded by antennal grooming class as in panels I-K. (L-M)
Representations of joint kinematics along the (L) first and (M) second principal components which
describe 27.5% and 13.9% of the variance, respectively. Values are in arbitrary units. Color code is the
same as in panel G.
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599

Fig. 2: Kinematic replay in a biomechanical model reveals the contribution of head and
antennal movements to foreleg-antennal interactions. We generated a kinematics dataset to
be replayed in simulation, allowing us to gradually perturb individual joint degrees of freedom while
measuring contacts between the forelegs and antennae. (A, D, G) Snapshots from kinematic replay
simulations with either an intact (top), or perturbed (bottom) (A) head pitch, (D) head roll, or (G)
antennal pitch. (B, E, H) Collision diagrams between tibia and tarsus foreleg segments and both
antennae (right/blue, left/orange) either in intact (top), or perturbed (bottom) (B) head pitch, (E)
head roll, or (H) antennal pitch. In panel B, asterisks indicate where tibial collisions disappear as head
pitch is decreased. In panel E, asterisks indicate that when head roll decreases, there are increased
collisions between the targeted antenna (left/orange) and the ipsilateral, left tarsus. As well, circles
indicate increased collisions between the non-targeted antenna (right/blue) and the ipsilateral, right
tibia. In panel H, as antennal pitch decreases asterisks indicate reduced collisions between the targeted
antenna (left/orange) and its contralateral, right tibia. As well, circles show increased collision between
the non-targeted antenna (right/blue) and its ipsilateral, right tibia. (C, F, I) Contact duration between
specific antennal and foreleg segments as a function of the movement magnitude of a joint degree of
freedom. Contact is normalized between minimum and maximum values across all gains/magnitudes for
each trial. Data are presented for: (C) n=4 flies, N=13 bilateral grooming bouts; (F, I) n=4 flies, N=16
unilateral grooming (uniL and uniR combined) bouts. Intact, unmodified kinematics are highlighted in
light gray boxes. Box plots show the median and quartiles. Box plot whiskers extend to 1.5 times the
interquartile range (IQR). Shown are statistical results for a two-sided Mann–Whitney U test comparing
the intact distribution with other gains/magnitudes: ***: P < 0.001, **: P < 0.01, *: P < 0.05 and
not significant (NS): P ≥ 0.05. P values were corrected using the Simes–Hochberg procedure.
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623

Fig. 3: Experimental perturbations show that sensory feedback is not essential for body
part coordination.
See Figure Legend on next page.
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Fig. 3: Experimental perturbations show that proprioceptive sensory feedback is not es-
sential for body part coordination. (A) Proposed control models that depend upon proprioceptive
sensory feedback. Each colored block represents a motor module consisting of motor neurons and their
premotor partners controlling a particular body part. For each model only one of several possible con-
figurations is shown. In cascading coordination, proprioceptive sensory feedback from the first moving
body part drives movements of the following body parts. In additive coordination, feedback from the first
two moving body parts jointly drive movements of the third. In diverging coordination, feedback from
one body part drives the movements of the other two. (B) Alternatively, ‘open-loop’ control models do
not depend upon proprioceptive sensory feedback. Body part coordination can be driven at different
levels along the sensorimotor pathway, beginning from immediately downstream of JO sensory input
(‘Input shared’), to central interneurons (‘Central hub’), and finally using efference copy from the motor
modules themselves (‘Output shared’). (C) Morphological and kinematic perturbations used to test the
contribution of sensory feedback to antennal grooming. These include amputating the forelegs and/or
antennae, as well as fixing the head in place with UV-curable glue. Each perturbation blocks one arrow
in the sensory feedback-dependent control diagrams. (D, F, H, J, L, N) Front and side camera images
overlaid with line drawings of the legs (orange), and arrows indicating movements of an antenna (green),
and/or head rotations (blue). The locations of experimental perturbation(s) are indicated (white arrow-
heads). (E, G, I) (top) Distribution of (E,I) tibia-tarsus joints’ mean lateral positions and (G) head
roll during unilateral left (magenta) or unilateral right (green) antennal grooming in either intact (darker
color) or experimental (lighter color) animals. (bottom-left) Median values of each kinematic variable
across trials for each fly and grooming subtype. (bottom-right) Differences between uniL and uniR
kinematic variables for intact versus experimental conditions. For (E) n=8, (G) n=7, and (I) n=10
animals. (K, M, O) (left) Distribution of joint angles and positions for the remaining freely moving
body part in experiments perturbing two body parts at once. (right) Differences between the 90th and
10th percentile of (K) the pitched antenna’s joint angles, and (M, O) median differences between body
part movements to the left and right. For (K) n=6, (M) n=5, and (O) n=4 animals. In boxen plots,
the median is represented by the largest middle line. Each successive level outward contains half of the
remaining data. In scatter plots, each dot represents an individual fly, with lines connecting the same
fly across behavioral subtypes or experimental conditions. One-sided Mann–Whitney U tests compare
uniR versus uniL under the same conditions, while two-sided tests compare data across experimental
conditions (e.g., intact versus head-fixed). Significance levels are indicated as follows: ***: P < 0.001,
**: P < 0.01, *: P < 0.05 and not significant (NS): P ≥ 0.05.
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662

Fig. 4: Body part motor modules are linked by central circuits in the fly brain connectome.
See Figure Legend on next page.
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Fig. 4: Body part motor modules are linked by central circuits in the fly brain connectome.
(A) Schematized network models for open-loop motor coordination of the head, forelegs, and antennae.
In the input shared model, JO-F sensory neurons directly project onto all three motor modules consisting
of premotor and motor neurons. In the central hub model, a group of central neurons diverge onto all
three motor modules. In the premotor coupling model, each motor modules communicates via their dis-
tinct yet interconnected premotor neurons. In the shared premotor model, all three sets of motor neurons
are controlled by shared premotor neurons. (B) Graph visualization of the connectivity of previously
identified40 antennal grooming neurons (highlighted) in the fly brain connectome19–21. Neuron types are
color-coded the same across panels B-E. (C) Graph visualization of our more comprehensive antennal
grooming network constructed using the fly brain connectome and seeded from the network in panel
B. Arrows indicate pre- to postsynaptic connectivity. Line colors and widths indicate neurotransmitter
identities and synaptic weights, respectively. (D) Renderings of all sensory, interneuron, descending, or
motor neurons in the antennal grooming network. (E) Adjacency matrix of the constructed network,
ordered by neuron type as in panel C. The connectivity matrix was binarized, making excitatory connec-
tions +1 and inhibitory connections -1. (F) The frequency of different neurotransmitters across neurons
(top) and synaptic connections (bottom) in the network. (G) The flow of signals across five hops in the
connectome-derived grooming network. Premotor neurons are defined as being directly upstream and
projecting more than 5% of their outputs onto motor neurons. Central neurons are defined as situated
between JO-F sensory neurons and motor modules (premotor and motor neurons) within a maximum
of four hops. (H) Neuronal groups ordered by their signal flow scores, ranging from input-like (left) to
output-like (right). Each dot represents one neuron, with JO-F neurons merged into one group for each
side of the brain. The axis was divided into nine intervals, and neurons were assigned to their respec-
tive layers. (I) Heatmaps showing (left) excitatory and (right) inhibitory connectivity between layers.
Indicated are the degree of feedback (orange) versus feedforward (black) connectivity. (J) Real connec-
tivity diagram of the network (to be compared with those in panel A). Line widths are proportional to
the percentage of connections between neuron groups (real values are given in panel K). Connections
below 4.6% are not shown. The same color code is used across panels J-M. (K) Heatmap showing the
contribution of inputs from one neuron group to another. Expected connections for each hypothetical
model are outlined. (L) Venn diagram showing the number of neurons classified as being premotor
to neck (blue), antennal (green), or leg (orange) motor neurons. Also indicated are shared premotor
neurons that synapse upon more than one type of motor neuron (asterisks). (M) Relative contributions
of inputs from premotor neuron types to motor neuron groups. “Separate” refers to premotor neurons
that project onto only one motor neuron type, and “shared” refers to those projecting onto more than
one motor neuron type. (N) Pearson correlation coefficients comparing connectivity diagrams (as in
panel J) derived from the real adjacency matrix with those from randomly shuffled adjacency matrices.
Each dot represents a shuffled network constructed using a random seed. Box plots show the median
(red line) and quartiles. Whiskers extend to the full distribution, excluding outliers beyond 1.5 times
the interquartile range (IQR).
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705

Fig. 5: Training and evaluating connectome-derived artificial neural networks for antennal
grooming. (A) The training dataset includes head and antennal kinematics of flies in response to
optogenetic stimulation consisting of varying step durations and pulse frequencies. Flies had their forelegs
amputated to prevent confounding contacts between the forelegs and the head or antennae. (B) An
unsupervised clustering algorithm, DBSCAN, was used to cluster neurons based on the connectivity
in one hemisphere of the symmetrized network. These clusters served as a proxy for cell types in the
network. It was applied to a similarity matrix of the grooming network (left) restricted to one brain
hemisphere and excluding sensory and motor neurons. Clusters are color-coded. Neurons that were not
clustered (left-most green cluster) were assigned to their own group. (C) Virtual optogenetic stimuli (red)
were delivered to JO-F neurons in the connectome-constrained neural network. Readouts from antennal
and neck motor neurons were fed into separate decoders, representing the musculoskeletal properties of
the neck and antennae. The decoders output one-dimensional joint angles for antennal pitch (right/blue,
left/orange) and head pitch (black). The left and right antennal motor neuron activities were fed to the
same decoder separately. The mechanosensory inputs JO-C and JO-E receive antennal sensory feedback:
a processed and time-delayed copy of antennal joint angles. Model parameters were optimized to match
real kinematic measurements from panel A. The loss was evaluated on a held-out test dataset, unseen
during training. (D) Training was performed for 30 different random seeds and models. (E) Trained
models were analyzed by applying slightly asymmetric JO-F activation and quantifying the unilaterality
of neural responses for each neuron pair. The unilateral selectivity index (USI) metric is defined as the
area under the right neuron’s response curve minus that of the left neuron’s response, divided by the sum
of both responses. Only positive neural responses were considered in this calculation. For instance, the
metric equals one when there is a positive response in the right neuron but no response in the left neuron.
The metric is undefined (N.A.) when both neurons do not respond. (F) Responses of antennal brain
interneurons (aBNs), descending neurons (aDNs), and motor neurons (aMNs) to asymmetric JO-F input
(left>right) in every trained model. Neural responses were quantified using the USI metric. Grey squares
indicate zero neural activity in both neurons (USI = 0/0). Magenta and green squares represent neurons
with larger ipsilateral and contralateral responses, respectively. The darkest colors denote cases in which
neurons on one side are predominantly active. (G) Summary of unilateral selectivity of aBNs, aDNs, and
aMNs across models. Among antennal motor neurons, only antennal motor neuron 4 (aMN4) consistently
exhibits a contralateral response to asymmetric (left greater than right) JO-F input. Each dot represents
a model (a square in panel F). (D, G) Box plots show the median (red line) and quartiles. Whiskers
extend to the full distribution, excluding outliers beyond 1.5 times the interquartile range (IQR).
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Özdil et al. 21 | 64



739

Fig. 6: Simulated neural activation uncovers neurons and circuit motifs driving unilateral
coordination.
See Figure Legend on next page.
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Fig. 6: Simulated neural activation uncovers neurons and circuit motifs driving unilateral
coordination. (A) aMN4 responses quantified by the USI metric for different JO-F input current pairs
(5.0, 0.5; 4.5, 1.0; 4.0, 1.5; 3.5, 2.0; 3.0, 3.0; as well as their mirrored values). Six trained models are
shown. USI values of 0 indicate no bias or equal response, whereas -1 and 1 correspond to fully left and
fully right aMN4 responses, respectively. (B) Left (magenta) and right (green) aMN4 neural activity
traces in response to JO-F input pairs marked in panel C, across models 11, 16, and 22. JO-F stimulation
period is indicated (gray shaded region). During asymmetric JO-F input, the aMN4 contralateral to the
stronger input responds, whereas the other aMN4 does not. Note that voltage traces are processed
through a ReLU activation function, thus there may be subthreshold, negative responses. (C) Activities
of aMN4 on the left or right side of the brain. These are shown as a function of the input current
magnitudes to left and right JO-F in the intact network. Values represent the difference between the
area under the curve for the left and right aMN responses (magenta for left aMN-dominant, green for
right aMN-dominant). Solid contours mark positive value intervals, and dashed contours mark negative
intervals, in increments of 0.1. Neither antennal motor neuron dominates along or near the diagonal
(white). Circles indicate the five pairs of current values shown in panel B, using the same color code. (D)
Neural perturbations used to assess the contribution of neurons/cluster to driving unilateral coordination:
(i) bilaterally symmetric JO-F input during unilateral activation of left-hemisphere neurons/clusters
(top) and (ii) slightly asymmetric JO-F input (left > right) during bilateral silencing of neurons/clusters
(bottom). Perturbations were systematically applied to each cluster/neuron in the network. (E) Effects
of unilateral neural activation on aMN4 responses (USI metric). Bilaterally symmetric JO-F input drives
equal left and right aMN4 responses in the unperturbed, intact network (far-left column). Neurons whose
unilateral activation transform this into contralateral right aMN4 responses are outlined in green; those
driving ipsilateral left aMN4 responses are outlined in gray. Each dot represents a model. The median
thresholds of 0.1 (contralateral) and -0.1 (ipsilateral) are highlighted (gray horizontal bar). Red and
blue labels indicate excitatory and inhibitory neurons/clusters, respectively. (F) Effects of bilateral
neural silencing on aMN4 responses (top) and global network activity (bottom). USI was calculated for
responses during slightly asymmetric JO-F input (left > right). The intact, unperturbed response (far-
left column) is fully right-dominant (USI = 1). Global activity quantifies the number of neurons in the
perturbed network with activity five times greater than their mean activity in the intact, unperturbed
network. Each dot represents a model. (E, F) Box plots show the median and quartiles. Whiskers
extend to the full distribution, excluding outliers beyond 1.5 times the interquartile range (IQR). (G)
The number and type of neurons for each significant cluster shown in panels H and I. Neuron types
are color-coded. (H) Diagram illustrating the recurrent excitation motif driving contralateral aMN4
activation in panel E (green boxed neurons/clusters). This recurrent excitatory motif was then merged
into a single cluster (excitatory cluster or ‘EC’). (I) Diagram illustrating connections between the EC
(self connections of EC are not shown) and the neurons eliciting ipsilateral aMN4 activation in panel
E (gray boxed neurons/clusters). In this broadcast inhibition motif, the inhibitory neuron c23 (right)
prevents upward pitch of its contralateral antenna (left) by suppressing its contralateral aMN4. Cluster
c64 is dimmed because it is inactive in the intact network. (H, I) Neurons or clusters with higher
activity compared to their contralateral counterparts are marked with upward black arrows, while those
with lower activity are indicated with downward green arrows. Connections from neurons with lower
activity are made transparent for visualization purposes. Neurons/clusters directly downstream of JO-F
are shown in blue, and edge colors correspond to neuron groups as in panel G. Red and blue lines denote
excitatory and inhibitory connections, respectively, with line thicknesses proportional to normalized
weights after the training of model 22. (J) Schematic representation of the mechanism underlying
unilateral coordination via aMN4 activation. JO-F neurons activate excitatory clusters on the targeted
antenna’s side (thicker arrow from JO-F), which activates aMN4 pitch motor neurons of the non-targeted
antenna and other network modules. Simultaneously, inhibitory neurons on the non-targeted antenna’s
hemisphere suppress excitation of the targeted antenna’s motor neurons and its excitatory clusters,
preventing its upward pitch. Red and blue lines indicate excitation and inhibition, respectively. Less
active elements are dimmed.
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Methods796

Data acquisition797

Fly husbandry and stocks798

All experiments were performed on female adult Drosophila melanogaster raised at 25 ◦C and799

50% humidity on a 12 hr light-dark cycle. Two days (36-40h) before optogenetic experiments,800

we transferred experimental flies to a vial containing food covered with 40µl of all-trans-retinal801

(ATR) solution (100mM ATR in 100% ethanol; Sigma Aldrich R2500, Merck, Germany) and802

wrapped in aluminium foil to limit light exposure. Experiments were performed on flies 3-5 days803

post-eclosion (dpe) between Zeitgeber Times (ZT) 4-10. Genotype used and sources are indicated804

in Table 1.805

Behavior recording system806

Tethered fly behaviors were recorded using a previously described 7-camera (Basler, acA1920-150807

µm, Germany) system46 with the exception that rear right and rear left cameras were ignored,808

which does not capture anterior grooming behaviors. Animals were illuminated with an infrared809

(850 nm) ring light (CSS, LDR2-74IR2-850-LA, Japan). To track the positions of each leg joint,810

five cameras were equipped with 94 mm focal length 1.00xInfiniStix lenses (Infinity, 94 mm 1.00x,811

USA). Cameras recorded data at 100 fps and were synchronized with a hardware trigger. The full812

field-of-view (FOV) of each cameras is 1920x1200 pixels with a pixel size of 4.8x4.8 µm. To reduce813

the size of the captured images and to increase acquisition rate, we set the ROI of each camera to814

960x480 pixels. Flies were tethered to a wire, but otherwise freely behaving upon an air-supported815

(0.8 L/min) spherical treadmill. Foam balls were manually fabricated to be 10 mm in diameter816

(Last-A-Foam FR-7106, General Plastics, Burlington Way, WA USA, density: 96.11 kgm−3).817

Confocal imaging818

We dissected the brain and VNC from 3-6 dpe female flies as described in ref61. Primary and819

secondary antibodies were applied for 24 hrs and sample was rinsed 2–3 times after each step820

(for details, see ref99). Antibodies and concentrations used for staining are indicated in Table 2.821

Samples were imaged using a Carl Zeiss LSM 700 Laser Scanning Confocal Microscope. Standard822

deviation z-projections of imaging volumes were made using Fiji100. We rotated, translated,823

and modified the brightness and contrast of images to enhance their clarity (Extended Data824

Fig. 1A).825

Tethering for behavioral measurements826

For optogenetics experiments, we used a stick-tether method. First, we cooled a copper apparatus827

housing a fly-sized ‘coffin’ on a cold plate for 10 minutes. This is used to keep the fly anesthetized828

during tethering. The fly was then gently placed inside this coffin using forceps, and its position829

Table 1: Fly strains used in this study.

Reagent Stock # Reference Source stock

aJO-GAL4-1 39250 97 Bloomington
UAS-CsChrimson 55134 - Gift from Brian McCabe

Spaghetti Monster smFP 62147 98 Gift from Brian McCabe

Özdil et al. 24 | 64



was adjusted using a brush. If the thorax was misaligned, the coffin was rotated (using a knob)830

to reposition the fly upright.831

A silver wire, 0.2032 mm in diameter (A-M Systems, Silver 0.008” 25 feet wire), was then832

glued (UV-curable glue, Bondic, Aurora, ON Canada) to the fly’s scutoscutellar suture and cured833

with UV light. This wire was connected to a female contact (Distrilec, female contact size 20 7.5834

A 14458991) that was then inserted into a corresponding male contact on the experimental setup,835

securing the fly onto an air-suspended ball or spherical treadmill. Each experiment began at least836

∼30 minutes after tethering to allow the fly to acclimate to its environment. Experiments were837

performed at 25 ◦C and 50% humidity, in the dark.838

Optogenetic stimulation839

For optogenetic stimulation, we used a 617 nm LED (ThorLabs, M617L3) mounted behind a lens840

(Thorlabs, LA1951–N–BK7 Plano-Convex Lens) to deliver ∼6.0 mW/mm2 intensity light to the841

fly from the right-anterior side (as shown in Fig. 1). The entire anterior body of the fly was thus842

illuminated. For flies used in Fig. 1 and Fig. 3, we delivered step pulses of 2-3 s duration, with843

at least 30 s intervals. In Fig. 5, stimulation patterns included both step pulses and flickering of844

varying periods and frequencies. All experiments were conducted in the dark.845

Air puff stimulation846

To elicit antennal grooming, humidified, non-odorized air was delivered at the fly’s antennae,847

deflecting them towards the head. Mass flow controllers (MFCs, Bronkhorst High-Tech B.V.,848

Netherlands) supplied regulated air flow at 70 mL/min. Airflow was diverted using six solenoid849

valves (SMC, S070C-6AG-32, Japan) controlled by an Arduino UNO (Arduino, Italy). This air850

was delivered to the fly’s antennae by way of a glass capillary held by a probe holder (MXB,851

Siskiyou Corporation, USA) linked to a post (ThorLabs, MS3R) and positioned facing the fly’s852

head. To better target air puffs, the glass capillary was pulled to thin its edge (P-1000, Sutter853

Instrument, USA; parameters: Pull: 0; Velocity: 10; Heat: 502; Pressure: 500).854

To compare air puff- and optogenetically-induced antennal grooming, we stimulated the same855

individual flies in alternation using a custom Arduino script to switch between the two stimulus856

sources.857

Morphological perturbation experiments858

To investigate the role of sensory feedback in body part coordination, we first recorded optogenetically-859

elicited antennal grooming in intact flies over 5 trials (each with 2 stimulation periods and ∼40 s860

intervals). We then used cold anesthesia to surgically remove sensory feedback via leg amputation,861

antennal amputation, head fixation, or multiple combinations of two of these perturbations.862

To amputate the legs, flies were first cold anesthetized. We then extended a foreleg using863

forceps and amputated it near the thorax-coxa joint with clipper scissors (FST, Clipper Neuro864

Table 2: List of antibodies used for immunofluorescence tissue staining in Extended Data Fig. 1A.

Type AB name Dilution Company AB ID

1° Anti-Bruchpilot (mouse) nc82 1:20 Dev. Studies Hybridoma Bank AB2314866
1° GFP Tag Rabbit 1:500 ThermoFisher G10362
2° Goat anti-Mouse Alexa 633 1:500 ThermoFisher A21052
2° Goat anti-Rabbit Alexa 488 1:500 ThermoFisher A11008
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Scissors, no. 15300-00, Fine Science Tools GmbH). This, rather than pulling, ensured that the865

VNC would not be damaged. To prevent desiccation and movement of the remaining leg piece, we866

sealed the stump with UV-curable glue. To amputate the antennae, we used two precision forceps867

to gently remove the pedicel and funiculus by pulling the antenna away from the head. To fix the868

head at its resting position, we applied a small drop of UV curable glue between the dorsal head869

and anterior thorax, avoiding head bristle deflection. After each surgery, we ensured that the flies870

could still actively move their other body parts; those that could not were discarded. Experimental871

flies were then placed on a spherical treadmill for 5 trials after a 20-minute acclimation period.872

For two-body part perturbation experiments, we repeated the same procedure and conducted an873

additional 5 trials to ensure comparisons were made using the same flies across conditions.874

Data processing875

2D & 3D pose estimation876

To quantify foreleg and head kinematics during antennal grooming, we used DeepLabCut53 and877

Anipose47. We annotated 10, 11, and 9 key points on the forelegs, head, and thorax, respectively.878

The first two sets of key points were used to calculate joint angles, while the thorax key points879

were used to help align the fly’s 3D pose within a common coordinate system. Three neural880

networks were trained for distinct sets of cameras: the front camera (camera 3), the front-right881

and front-left cameras (cameras 2 and 4), and the side-right and side-left cameras (cameras 1882

and 5), as shown in Fig. 1. We used DeepLabCut v2.2.1 to annotate camera images and train883

ResNet50 models. Each network was trained on ∼650 manually annotated frames for 500,000884

epochs with batch size of 8, using a 95-5% train/test ratio. The dataset included primarily885

anterior grooming behaviors, including those with variations in head and foreleg configurations886

across different conditions such as leg or antennal amputation. Several iterations of training were887

conducted to correct outlier frames, culminating in a final comprehensive training phase where888

all annotated frames were merged and networks were retrained from scratch.889

For 3D pose reconstruction, we used Anipose v0.9.0 and calibrated five cameras with a890

ChArUco board. The pattern was designed using OpenCV v4.5.5 with the board marker dictio-891

nary number 250 (aruco.DICT 4x4 250) and 4-bit markers101. The board contains 7x6 squares,892

with each marker measuring 0.225 mm and each square 0.300 mm. The pattern size is 2.1x1.8893

mm, and the board size is 2.4x2.1 mm (± 0.1 mm). The board, printed on Opal with Blue894

chrome etching by Applied Image (Rochester, NY), features an etching dye that minimizes light895

reflection from the infrared (IR) ring-light, reducing interference with the cameras. We attached896

the board to a pin, allowing smooth movement while maintaining stability when inserted into the897

fly holder. The calibration video was captured at 40 FPS with full FOV (1920x1200 pixels) for 2898

min, ensuring that the board remained visible and in focus in at least two cameras simultaneously.899

We used Anipose for marker detection and manually verified the accuracy frame-by-frame. The900

video acquisition and calibration process were repeated until the intrinsic and extrinsic camera901

matrices aligned with expected values. For instance, we verified that the camera locations from902

the calibration process matched those in our behavioral recording setup for the extrinsic values.903

We performed 3D pose reconstruction on filtered 2D pose tracking data using the Viterbi904

filter provided in Anipose. We chose this filter for its simplicity and effectiveness47. The filter905

window length was set to 25 frames (250 ms), which preserved rapid behavioral movements while906

mitigating most outliers. Since camera calibration is a one-time process, the quality of pose907

reconstruction can degrade due to environmental factors such as changes in lighting or slight908

shifts in cameras’ positions. To improve the robustness of our reconstructions, we enabled animal909

calibration and extended the number of iterations while tightening the tolerance in the bundle910

adjustment algorithm, which increased the processing time (these adjustments are available in911
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the repository: https://github.com/gizemozd/anipose/tree/master). We disabled Ransac912

triangulation and activated spatiotemporal regularization.913

The y and z axes of the 3D coordinate system were aligned with the vector from the right to914

left dorsal humeral, and from the left ventral to dorsal humeral bristles, respectively. The x axis915

was defined as the cross product of the y and z axes. The thorax “mid-point” was designated as916

the origin of the coordinate system, as these key points were minimally occluded in the recordings,917

providing sufficient stability. For more details, refer to the code, which includes all configuration918

files and a page explaining parameter choices (https://github.com/NeLy-EPFL/kinematics3d).919

3D pose alignment & inverse kinematics920

To calculate joint angles, we first align the experimentally acquired 3D poses to a template biome-921

chanical fly model (NeuroMechFly v249), using a process also called scaling 102,103. This alignment922

is performed in two stages. First, we calculate the distances between key body landmarks to derive923

scaling factors that adjust the experimental 3D data to match the body segment proportions of924

the biomechanical model. These landmarks include the Thorax-Coxa and Claw (or Tibia-Tarsus925

joint) for each foreleg, base and tip of each antenna, and mid-wing hinge to mid-antennae for the926

head (when the fly is stationary). This process yields five scaling factors—two for the forelegs, two927

for the antennae, and one for the head. We then multiply each scaling factor with the correspond-928

ing limb, allowing us to match the task space of the real animal with that of the biomechanical929

model. In the second stage, we translate the positions of “fixed” joints (e.g., Thorax-Coxa, Base930

Antenna joints) to their respective locations on the biomechanical model. This two-step process931

aims to (i) reduce noise from jittery fixed key points and (ii) minimize leg size variations caused932

by triangulation or false positives in pose tracking.933

Conventional optimization-based inverse kinematics methods aim to match the end effector934

position closely but often disregard the positions of preceding joints, leading to unrealistic move-935

ments of kinematic chains. To track each joint position closely, we developed a sequential inverse936

kinematics method, constrained by the fly’s exoskeleton54, also known as “body movement opti-937

mization”104,105. Our approach begins with the proximal-most leg segment to calculate the degrees938

of freedom (DOF) angles for the next joint. It then sequentially extends the kinematic chain by939

adding one segment at a time, repeating this process until it reaches the chain’s tip. This method940

is performed in four steps as follows:941

• Stage 1: The kinematic chain includes only the coxa, used to calculate Thorax-Coxa yaw942

(rotation around the anteroposterior axis) and pitch (rotation around the mediolateral axis)943

by following the coxa tip as the end-effector.944

• Stage 2: The chain extends to the coxa and the trochanter + femur (fused), calculating945

Thorax-Coxa roll (rotation around the dorsoventral axis) and Coxa-Trochanter pitch, using946

the femur tip as the end-effector.947

• Stage 3: The chain includes the coxa, trochanter + femur, and tibia, used to calculate948

Trochanter-Femur roll and Femur-Tibia pitch by following the tibia tip as the end-effector.949

• Stage 4: The full leg is included to calculate Tibia-Tarsus pitch, using the claw as the950

end-effector.951

Our pipeline builds on the open-source inverse kinematics library IKPy106, which uses SciPy’s952

least squares optimizer107 to minimize the Euler distance between the original end-effector pose953

and the forward kinematics derived from the calculated joint angles.954

Since the head has two moving parts (left and right antennae) parented by the main neck955

joint, the kinematic chain method can introduce errors by favoring one antenna over the other.956
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To avoid this, we calculated neck and antennal joint angles using the cosine angle formula between957

two vectors. The vectors for the head joint angles are defined as follows:958

• Head roll: The angle between the vector from the right antenna base to the right antenna959

tip and the global mediolateral axis in the transverse plane.960

• Head pitch: The angle between the vector from the neck to the mid-antennae base and961

the global anteroposterior axis in the sagittal plane.We subtracted the resting head pitch962

angle from the calculated joint angles to obtain joint angles relative to the resting position.963

• Head yaw: The angle between the vector from the right antenna base to the right antenna964

tip and the global anteroposterior axis in the dorsal plane.965

• Antennal pitch: The angle between the vector from the neck to the antenna base and the966

vector from the antenna base to the antenna tip in the sagittal plane.967

• Antennal yaw: The angle between the vector from the right antenna base to the left968

antenna base and the vector from the antenna base to the antenna tip in the transverse969

plane.970

Note that, when head rotation reaches 90°, the antennal pitch and yaw calculations switch971

roles, leading to inaccuracies. To avoid this, we first calculate the head joint angles, then derotate972

the head key points by the head rotation to compute the antennal joint angles.973

Performance-wise, the entire pipeline takes 36 s to run inverse kinematics for six legs on 100974

frames, using a MacBook Pro with a 2.3 GHz Quad-Core Intel Core i7, when parallelized.975

Our method is publicly accessible at54:976

https://nely-epfl.github.io/sequential-inverse-kinematics.977

Classification of behaviors978

To investigate the kinematics of different antennal grooming subtypes, we labeled the record-979

ings based on behavior. Seven distinct labels were used to annotate the videos. Five of these980

groups represent some variations of antennal grooming, while the remaining two correspond to981

other behaviors unrelated to antennal grooming. Each antennal grooming subtype is charac-982

terized by a specific coordination between the movements of the forelegs, head, and antennae.983

Using DeepEthogram v0.1.4 GUI108, we labeled each video frame for 33 trials across 10 flies (see984

Supplementary Video 3). The subtypes can be summarized as follows:985

• Bilateral grooming:986

- Both antennae are cleaned simultaneously.987

- The forelegs move synchronously, typically at the same height.988

- Frequent observation of head pitch, with occasional slight head roll (∼10°).989

• Unilateral antennal grooming (right or left):990

- Grooming is focused on a single antenna.991

- The head rotates towards the groomed antenna, lowering it.992

- The non-groomed antenna actively lifts up.993

- The forelegs target the groomed antenna, shifting their position to one side.994

- The head is slightly pitched downward.995

• Unilateral non-tripartite antennal grooming (right or left):996

- A single antenna is groomed, but not all conditions described in unilateral antennal997

grooming are met.998
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- A single leg is raised to touch one antenna.999

• Non-classified grooming:1000

- The forelegs are not in contact with the head but hover in front of the fly, typically at1001

the level of the maxillary palps.1002

- Involves other forms of anterior grooming, such as head grooming.1003

• Background:1004

- Behaviors outside of the anterior grooming such as foreleg rubbing, resting, or locomotion.1005

Data analysis1006

Transitions between behaviors1007

We computed the transition frequencies between grooming subtypes. Each time point was assigned1008

a behavior label, and we counted the number of transitions from one label to another during each1009

trial, ignoring transitions with the same label.1010

For visualization purposes, we used the NetworkX109 library to create a directed graph, where1011

each node represents a behavior, and the edges indicate the transition frequencies between behav-1012

iors. To represent these transitions as a probability matrix, we converted the graph into a matrix1013

using NetworkX and normalized each row by the sum of its values, ensuring that the transition1014

probabilities from one behavior to all others sums to one.1015

Dimensionality reduction using PCA1016

To reduce the dimensionality of optogenetically-induced antennal grooming kinematics data, we1017

performed Principal Component Analysis (PCA). We first identified kinematic variables showing1018

the most significant changes during antennal grooming. These included joint space variables such1019

as antennal pitch, head pitch and roll, thorax-coxa pitch and roll, coxa-trochanter pitch and roll,1020

as well as the 3D positions of the antennal base and tip, and the foreleg Tibia-Tarsus joints in1021

the transverse plane. In total, we had 28 time series inputs for dimensionality reduction (12 joint1022

angles and 16 joint positions in 3D). Each kinematic variable was standardized to have zero mean1023

and unit variance. We then partitioned the dataset (size Ntimesteps, 28) into 10-time-step chunks1024

(Nchunks, 10, 28) using a sliding window of 8. As the sampling rate of the data is 100 fps, this1025

amounts to the data partitions of 100 ms with a 20 ms of overlap. To ensure that each chunk1026

contained continuous time series data, rather than transitions between trials, this process was1027

performed on a trial-by-trial basis.1028

Note that each chunk is assumed to represent one behavior; however, a chunk might be popu-1029

lated by several behavioral labels. To ensure data chunks predominantly reflected a single behav-1030

ior, we excluded chunks with fewer than 60% of the labels corresponded to a specific behavior.1031

That is, we removed chunks with fewer than six labels for a given behavior. Additionally, chunks1032

labeled as ‘background’ were excluded, as this category includes a diverse set of behaviors unre-1033

lated to antennal grooming. After this filtering, we retained 2,537 chunks as data points. Next,1034

we reshaped our kinematic matrix (Nchunks, 10, 28) into a 2D array (Nchunks, 280) for PCA. Five1035

principal components captured more than 60% of the variance in our data. For visualization, we1036

plotted the first two columns of the weight matrix as it captured 40% of the variance (Extended1037

Data Fig. 1F). Each point, representing a chunk, was colored according to the most frequent1038

behavioral label within that chunk.1039
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Table 3: Thresholds used for annotating behavioral chunks in Fig. 3. Variables shown: ant p: antennal
pitch, head r: head roll, head p: head pitch, tita: tibia-tarsus joint position. Only conditions for labeling
a chunk ‘right’ are shown: labeling the ‘left’ is simply the opposite.

Experiment Outlier check Behavior check Right label condition

Head-fixed
ant p <0° med(ant pR,L) > 22◦ med(ant pL − ant pR) > 6◦

∥titaYR,L∥ >2 mm

Leg amp. ant p <0° med(ant pR,L) > 22◦ med(ant pL − ant pR) > 6◦

Ant. amp. ∥titaYR,L∥ >2 mm med(head p) > 8◦ med(head r) > 5◦

Head-fix&Leg amp. ant p <0° med(ant pR,L) > 22◦ med(ant pL − ant pR) > 6◦

Head-fix&Ant. amp. titaYR,L >2 mm med(titaZR, tita
Z
L) > 0.8 mm mean(titaYR , tita

Y
L ) > 0 mm

Leg amp.&Ant. amp. ∥head r∥ >90° med(head p) > 8◦ med(head r) > 2◦

Analysis of perturbation experiments1040

For each perturbation type, we first divided the kinematics during optogenetic stimulation into1041

chunks of 300 ms with 50 ms overlaps for each fly after denoising single kinematic traces with a1042

Savitzky–Golay filter (window size: 9, degree: 3). For each chunk, we checked if a given epoch of1043

kinematics is free from outliers (Table 3, outlier check) and if any of the body parts was moving1044

(Table 3, behavior check). If these conditions were not met, we discarded the chunk. Valid1045

chunks were labeled based on the movements of freely moving body parts (Table 3, right label1046

condition). For head-fixed flies, we labeled chunks based on antennal movements, using the1047

difference between left and right antennal pitch angles. If this difference exceeded a set threshold,1048

we annotated the chunk according to the lifted antenna. The annotated data was then used to1049

plot the distribution of Tibia-Tarsus joint positions in the mediolateral plane (Fig. 3E). Similarly,1050

we used antennal pitch angles to annotate leg amputation experiments, but we plotted the head1051

rotation angles this time (Fig. 3G). For antennae amputation, we designated the labels based on1052

the head rotation: chunks were annotated if the median head roll angle fell within a certain range;1053

otherwise, they were labeled as either right or left based on the direction of rotation. As with1054

head-fixed experiments, we then plotted the Tibia-Tarsus joint position distribution (Fig. 3I).1055

The thresholds used for each kinematic variable are listed in (Table 3).1056

For phenotype analysis (Fig. 3E-I, bottom left), we calculated the median value for each1057

biological replicate (i.e., each fly) for both phenotypes (left and right) and visualized them using1058

scatter plots. To compare intact and experimental flies, we examined the difference between these1059

left and right label values, using the median across all trials for each fly to measure the variation1060

in joint configurations (Fig. 3E-I, bottom right). This approach allowed us to assess the range1061

of movement for a given degree-of-freedom between the left and right behavioral conditions.1062

From two-body part perturbations, we compared the movement range of the remaining body1063

part to that in intact flies. For head-fixed and foreleg-amputated flies, we first checked for outliers1064

and antennal pitch movement. If a chunk was valid and one antenna was pitching, we proceeded1065

with the chunk corresponding to the upward-pitched antenna. We repeated the same procedure1066

for the head roll in antennae- and leg-amputated flies, and for the lateral position of forelegs in1067

antennae-amputee and head-fixed flies. Each valid chunk was labeled based on the direction of1068

the freely moving body part (i.e., right or left). The distribution was then plotted using all valid1069

chunk data (Fig. 3K-O, left).1070

To compare flies across different conditions, we calculated the difference between the 90th and1071

10th percentile values of antennal pitch as a proxy for the movement’s maximum and minimum1072
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range (Fig. 3K right). For the head roll and Tibia-Tarsus joint positions, we took the median of1073

all left-labeled chunks from each fly and subtracted it from the median of the right-labeled chunks1074

(Fig. 3M,O right). We kept the fly identities across conditions, indicated by a line between1075

each dot in the scatter plots (Fig. 3E,G,I,K,M,O).1076

Kinematic replay and antennal contact detection1077

To infer limb-antennal contacts, we performed kinematic replay using the updated fly biome-1078

chanical model from49 in the physics engine MuJoCo v2.3.7110 and integrated in the FARMS1079

framework50.1080

Simulating antennal grooming in a physics engine poses several challenges. First, because1081

there are numerous contact points between the antennae and foreleg meshes, extensive collision1082

detections are required at every time step. Second, we used mesh-based collision bodies, including1083

complex geometries, further increasing the computational load.1084

To address these issues and to ensure smooth kinematic replay, we implemented several opti-1085

mizations. First, we reduced the time step to 10−4 s and limited the simulations to short snippets1086

(around 5 s) to increase the stability of integrators and to avoid error accumulation throughout the1087

simulation. We also fine-tuned the physics engine parameters, using the ‘Projected Gauss–Seidel’1088

solver with an Euler integrator. We increased the number of solver iterations to 107 and lowered1089

the residual threshold to 10−10 to improve stability. Additionally, to speed up the simulation, we1090

restricted collision detection to only between the forelegs and head segments.1091

In total, we actively controlled 16 degrees of freedom: 7 for each foreleg, as described in48, and 21092

for head roll and pitch. We set the antennal joints as passive (following spring-damper dynamics).1093

We maintained a fixed resting pose because replaying measured antennal joint angles introduced1094

confounding factors due to collisions occurring during these measurements. To better emulate1095

the kinematics of unilateral grooming, we adjusted the antennal joint angles (e.g., pedicel and1096

funiculus pitch) to different values, placing the non-groomed antenna in an upward pitch position.1097

We empirically tuned the joint damping and stiffness parameters to qualitatively mimic passive1098

antennal movements after contact. All passive antennal joint angles are provided in Table 4.1099

To visualize collisions between the antennae and leg segments (Fig. 1H and Fig. 2B,E,H),1100

we binarized the contact force read-outs, converting any non-zero forces between a collision pair1101

to 1, representing “contact on” time points. For articulated parts—pedicel, funiculus, arista for1102

antenna, and tarsi 1-5 for the tarsus—we combined the binarized contact arrays into a composite1103

contact array by taking their union. The resulting binary contact arrays between each antenna1104

and leg segment pair over time were displayed as collision diagrams.1105

To quantify contact duration (Fig. 2C,F,I), we summed each contact array over time for a1106

given collision pair, representing the total contact duration for that trial. We performed kinematic1107

replay at different gains and normalized the data to a 0-1 range based on the maximum and1108

minimum values observed. This normalization allowed us to identify the gain at which maximum1109

contact occurred for each trial. We modulated degree of freedom kinematics by multiplying the1110

original joint angles with a constant factor (attenuating ∈ [0, 1) or amplifying ∈ (1, 1.3]) while1111

keeping the kinematics of other degrees of freedom unchanged. Due to noise and outliers in the1112

2D and 3D pose estimation, and variations in animal morphology, the mapped kinematics might1113

not always yield an accurate kinematic replay of the behavior. To mitigate this effect, we ignored1114

simulations where the detected contacts lasted less than 10 ms, amounting to, on average, ∼2%1115

of a simulation trial.1116

To quantify contact forces (Extended Data Fig. 4C), we calculated the median of all non-1117

zero contact force values for each replay experiment. Specifically, we measured contact forces1118

between the tibia and its ipsilateral antenna, and between the tarsus and its ipsilateral antenna.1119
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Table 4: Resting positions of passive joint angles given in degrees.

Head yaw Pedicel roll, pitch, yaw Funiculus roll, pitch, yaw Arista roll, pitch, yaw

Behavior - Right Left Right Left Right Left

UniL 0 0, -60, -35 0, -40, 35 10, -25, 0 -10, -10, 0 0, 0, 35 0, 0, -35

UniR 0 0, -40, 35 0, -60, -35 10, -10, 0 -10, -25, 0 0, 0, 35 0, 0, -35

BiLat 0 0, -40, 35 0, -40, 35 -10, -10, 0 -10, -10, 0 0, 0, 35 0, 0, -35

Each data point in the distribution represents the median contact force for a single trial. This1120

process was repeated across multiple animals/trials and gain values.1121

Connectome analysis1122

Loading connectomics data1123

As for brain connectivity analysis, we used the female adult fly brain (FAFB20,19) connectomics1124

dataset from Codex (FlyWire materialization snapshot 783; https://codex.flywire.ai/api/1125

download) to generate figures Fig. 4, Extended Data Fig. 7B-F and Extended Data Fig. 8. We1126

also used the male adult nerve cord (MANC, version 1.2.1111,25) dataset using NeuPrint Python1127

API to generate figures Extended Data Fig. 7G-H.1128

Constructing the antennal grooming network1129

We constructed a comprehensive antennal grooming network in two stages, starting with a smaller1130

foundational network and then expanding it by exploring its neighboring connections.1131

To build the foundational network, we first identified key antennal grooming-related neurons1132

in the brain connectome, including JO-C/E/F, antennal bristles, aBN1-3, and aDN1-337,40. JO-1133

C/E/F and antennal bristle mechanosensory neurons were selected because they are known to1134

trigger antennal grooming39,40. We also included antennal and neck motor neurons in this foun-1135

dational network, as they act as the output layer of this system.1136

We used FlyWire Community labels19,20,55 to identify neck motor neurons, but similar labels1137

were not available for antennal motor neurons. To address this, we examined motor neurons1138

passing through the antennal nerve, focusing on their branching patterns. Among the seven pairs1139

of motor neurons we found, two primarily received inputs from visual neurons and were likely1140

retinal motor neurons112. Therefore, to narrow down the search space of network, we excluded1141

those two motor neurons. Among the remaining five, several motor neurons received inputs from1142

JO and aBN neurons, suggesting a role in antennal motor control.1143

Having established the foundational network, we next expanded it by mapping out all monosy-1144

naptically connected neurons using the connectivity diagram from the FAFB connectome (Extended1145

Data Fig. 7A). In particular, for each of these monosynaptically connected neurons, we calcu-1146

lated the percentage of synapses incoming from and outgoing to foundational network neurons.1147

Neurons with connectivity percentages below a predefined threshold were pruned from the net-1148

work. Depending on the neuron type (e.g., descending neurons sometimes lacking axon ter-1149

minals in the brain and sensory neurons lacking dendrites), we applied specific rules based on1150

“super class” annotations in FAFB to guide the pruning process, described below:1151

• Sensory neurons: outgoing synapse percentage > threshold1152

• Interneurons: incoming syn. perc. > threshold and outgoing syn. perc. > threshold1153
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• Descending neurons: incoming synapse percentage > threshold1154

We excluded ascending neurons and other sensory neurons from our network, as their role in1155

antennal grooming is not yet well characterized. To ensure that we capture only neurons with1156

significant information exchange, we applied a threshold of 5%, accounting for only those neurons1157

that contribute to at least 5% of the input/output interactions within our predefined network.1158

This threshold is ten times lower than the threshold after which the algorithm does not find1159

any new neurons (Extended Data Fig. 7B), suggesting that 5% is sufficiently high to discover1160

new neurons. Furthermore, this choice of threshold is consistent with recent findings indicating1161

that connections providing more than 1.1% of target neuron’s inputs are 90% more likely to be1162

preserved across brains20. This process introduced approximately 240 new neurons to the network1163

(Extended Data Fig. 7C). Because all leg motor neurons are located downstream of the brain1164

within the VNC, descending neurons with more than 10 synapses upon foreleg-controlling (T1) leg1165

motor neurons were defined as ‘leg premotor neurons’. These were limited to descending neurons1166

that have been matched across brain19–21 and VNC111,25 connectome datasets113. We did not1167

include foreleg motor neurons as a separate group, because they are part of the VNC dataset.1168

Neurons that did not fit into any predefined categories were left unassigned.1169

Most of these neurons had contralateral counterparts, but due to differences in synapses be-1170

tween the left and right hemispheres, our network construction algorithm was not always able1171

to find these pairs automatically. Therefore, to identify missing contralateral pairs, we used two1172

approaches. First, we calculated dissimilarity scores between a neuron and all of its contralateral1173

candidates. The dissimilarity score Dij between neuron i and neuron j is given by1174

Dij = degree scoreij + eigenvector scoreij + (1− neighbors scoreij) (1)

where1175

degree scoreij =
|dini − dinj |

0.5 ∗ (dini + dinj ) + 10−6
+

|douti − doutj |
0.5 ∗ (douti + doutj ) + 10−6

(2)

1176

neighbors scoreij =
|Ni ∩Nj|

|Ni ∪Nj|+ 10−6
(3)

1177

eigenvector scoreij = |υi − υj| (4)

where din, dout in- and out-degrees, υ eigenvector scores, and N sets of neighbors of nodes. We ob-1178

tained degree and eigenvector scores using the built-in NetworkX109 functions degree centrality1179

and eigenvector centrality. Note that, for identical neurons, the dissimilarity metric becomes1180

zero. We verified that dissimilarity scores for the same cell types were lower than those for dif-1181

ferent cell types. We used this approach to match sensory neurons. Specifically, we first divided1182

sensory neurons into high-level classes, that is, JO-C/E/F and antennal bristles based on the Fly-1183

Wire neuron classification (cell type attribute). Within each class, we then computed dissimilarity1184

scores for each neuron pair, resulting in a global list of N2
neuron entries storing dissimilarity scores.1185

We then assigned neurons by sequentially pairing those with the highest dissimilarity scores.1186

The remaining neurons were matched through a combination of community label matching,1187

anatomical and biological comparisons (e.g., hemilineage), and the similarity of their neighbors.1188

In cases where FlyWire had already identified a “mirror twin” neuron, we adopted its match. For1189

neuron populations where individuals were indistinguishable, we assigned pairs randomly.1190

Connectivity analysis1191

For our antennal grooming network, we identified pre- and post-synaptic neurons, along with all1192

the connections between them, including neurotransmitter types. We used the publicly available1193
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FlyWire brain connectome dataset to conduct these analyses. For each synaptic connection, we1194

assigned the neurotransmitter with the highest prediction probability. To maintain consistency, we1195

assigned the most commonly predicted neurotransmitter to each neuron and applied it uniformly1196

to all of its connections. This rule, however, did not apply to neurons lacking axon terminals1197

in the brain. To analyze connectivity in the VNC, we used the neuprint.fetch adjacencies1198

function to retrieve synaptic adjacency data.1199

Assigning neurons to groups1200

To investigate the coordination between antennal, foreleg, and neck motor neurons, we analyzed1201

common connectivity motifs within our network. To simplify this task, we categorized the network1202

into eight main groups: sensory neurons (JO-F), central neurons, antennal premotor neurons, neck1203

premotor neurons, foreleg premotor neurons, shared premotor neurons, antennal motor neurons,1204

and neck motor neurons. Since leg motor neurons are part of the VNC dataset and there is no1205

one-to-one mapping between descending or ascending neurons in the brain and those in the VNC,1206

we excluded them from our analysis. Neurons that did not fit into these categories were classified1207

as “other.”1208

Motor neurons and JO-F sensory neurons were already annotated in the brain connectome.1209

We defined premotor neurons as those having more than 5% of their total output directed toward1210

motor neurons that control the same appendage. For example, an antennal premotor neuron1211

projected more than 5% of its output to antennal motor neurons, but may have had less than 5%1212

output to other types of motor neurons. Shared premotor neurons were those with more than 5%1213

of their output projecting onto more than one type of motor neuron.1214

Because leg motor neurons are not in the brain, we also examined descending neurons (DNs)1215

projections in the VNC to identify those with direct connections with T1 leg motor neurons1216

(annotated as MNfl in MANC80,25). Since a completely proof-read “full CNS” connectome is not1217

yet available, we relied on a recent study113 that bridged brain descending neurons with their1218

VNC counterparts through light-level descriptions of their full morphology. Among the 188 DNs1219

in our network, 75 were matched with their VNC extensions. However, a bijection could not be1220

achieved for some DN populations because it was challenging to distinguish individual neurons1221

whose axons travel together in bundles. Therefore, if any neuron in a population projected onto1222

a leg motor neuron, we classified the entire population as ‘leg premotor’. We set a threshold of 101223

synapses in the VNC to qualify as a premotor neuron. We employed the same approach for VNC1224

neck motor neurons (annotated as MNnm in MANC80,25). Since the DNs presynaptic to VNC1225

neck motor neurons belonged to the same DN population presynaptic to leg premotor neurons,1226

we excluded neck premotor neurons in the VNC to avoid overestimating the number of shared1227

premotor neurons.1228

After defining the premotor neuron classes, we proceeded to identify central neurons. Cen-1229

tral neurons were defined as those located between the input (JO-F neurons) and output lay-1230

ers (premotor and motor neurons) of the network. To identify these neurons, we used the1231

networkx.all simple paths109 function to generate all simple paths between source (JO-F) and1232

target (premotor and motor neurons) neurons, with a maximum of four hops. We set the limit to1233

four layers, as this has been shown to be sufficient to reach a majority of neurons in the fly ner-1234

vous system56,80,114. To further refine the network and eliminate neurons with minimal synaptic1235

contribution, we computed the average synaptic percentage, defined as the number of synapses1236

between a pre- and post-synaptic neuron divided by the total synapses the presynaptic neuron1237

makes. We discarded paths with an average synaptic percentage below 5%.1238

To create randomized networks (Extended Data Fig. 9A,B), we reassigned existing con-1239

nections, along with their synaptic counts, to random pairs of presynaptic neurons (excluding1240
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motor neurons) and postsynaptic neurons (all neurons). The identities of JO-F sensory neurons,1241

motor neurons, and leg premotor neurons were preserved. Using these predefined modules, we1242

constructed other neuron groups (e.g., premotor and central) following the same procedure.1243

Graph visualizations1244

We used the NetworkX package109 to visualize network connectivity in Fig. 4B,C,J; Fig. 6H,I;1245

Extended Data Fig. 8 and Extended Data Fig. 11C,F,G. From the connectivity table, we generated1246

a directed graph where the source node represented the pre-synaptic neuron and the target node1247

represented the post-synaptic neuron. The edge widths were proportional to synaptic counts.1248

We used dark blue, light blue, and dark red to denote GABA, glutamate, and acetylcholine1249

neurotransmitters, respectively, and gray for the remaining neurotransmitters (e.g., dopamine1250

and serotonin). For graph visualizations in Fig. 4J, Fig. 6H,I and Extended Data Fig. 11F,G we1251

exported NetworkX graphs in .gephx format and imported them into Gephi v0.10.1 to modify1252

node locations and graph aesthetics.1253

Connectome-constrained neural network modeling1254

Preparing the training dataset1255

The training dataset consisted of head kinematics (i.e., antennal pitch and head pitch joint angles)1256

from leg-amputated flies. We optogenetically elicited antennal grooming (as described in Extended1257

Data Fig. 1) following a recovery and habituation period of approximately 20min. Data was1258

collected from 10 flies; around 22 trials were conducted per fly. Each trial involved two types of1259

stimuli: step inputs of varying duration (0.5, 1, 2, 3 s) and pulsatile inputs of varying frequencies1260

(5, 10, 20 Hz) delivered over a 2 s period.1261

Measured antennal and head pitch angles were then used as an output dataset, and optogenetic1262

stimulation patterns served as an input dataset. Stimulation values were coded 0 for off periods1263

and 1 for on periods. Joint angles were scaled with 99th percentile corresponding to 1 and 1st1264

percentile corresponding to 0. This effectively mapped the joint angle range to a 0-1 scale.1265

Baseline subtraction was performed to ensure that the resting pose corresponds to 0. Since the1266

model was simulated at a 1ms resolution, we interpolated the data captured at 100 FPS to match1267

this sampling rate.1268

To create fictive sensory feedback, we only used antennal pitch angles. Neck proprioceptive1269

neurons are not yet fully characterized. By contrast, the antennal JO is well-studied and contains1270

distinct populations of mechanosensory neurons (i.e., JO-C and JO-E), which are tuned to upward1271

and downward movements of the antenna, respectively37,115. From antennal joint angle traces, we1272

first standardized the antennal joint angles such that the resting position of the antenna would1273

correspond to zero. We then identified movements above and below the baseline, corresponding1274

to upward and downward antennal movements. Since these signals would be provided as inputs1275

to their corresponding sensory neurons, we converted negative values to positive. Additionally, we1276

introduced a 40ms time delay to emulate the sensorimotor delay between the creation of motor1277

commands and their reception by mechanosensory neurons.1278

Each input-output pair represented a single stimulation period and had a fixed length of1279

3.8 s, allowing us to run the network with no input for a certain duration (with the longest1280

stimulus being 3 s). To ensure that the loss was calculated only during optogenetic stimulation,1281

we constructed a “mask” to indicate the start and end of stimulation, and only calculating the loss1282

(and hence the gradient) during the stimulus periods. In total, we obtained 412 trials, resulting1283

in an input dataset of (Ntrials = 412, Ntime = 3800, Nneurons = 852) and an output dataset of1284

(Ntrials = 412, Ntime = 3800, Njoints = 3). A sample is shown in Extended Data Fig. 10A.1285
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Adjacency matrix preparation1286

While constructing our antennal grooming network, we ensured that each neuron had a contralat-1287

eral pair. However, we observed differences in synaptic connectivity between the left and right1288

hemispheres, likely due to biological variability and imperfections in the connectome dataset. To1289

eliminate the impact of this asymmetry on our results, we tried three different ways to make1290

connections across both hemispheres symmetrical:1291

• Maximum: Set synaptic counts to the maximum observed for a neuron pair.1292

• Minimum: Set synaptic counts to the minimum observed for a neuron pair.1293

• Average: Set the synaptic counts to the average of observed for a neuron pair.1294

This resulted in three different adjacency matrices: 7,772 connections for the maximum and av-1295

erage methods, 2,148 connections for the minimum method, and 4,961 connections in the original1296

network. The minimum method is likely to eliminate important connections and the average1297

method might bias synaptic counts if a connection was missing on one side. Therefore, we used1298

the maximum model.1299

Next, in our maximum adjacency matrix, we grouped neurons—except for sensory and motor1300

neurons—based on the similarity between their pre- and post-synaptic connections. We calculated1301

the Pearson correlation coefficient between two neurons’ upstream and downstream connections1302

and summed them. Therefore, in this similarity matrix, two identical neurons will have an entry1303

value of 2 whereas two highly different neurons will have a score of −2. From this matrix, we1304

calculated a distance matrix, calculated my 0.5 ∗ (2− Asim) where Asim is the similarity matrix.1305

Then, we applied the unsupervised clustering algorithm DBSCAN116 to the distance matrix to1306

cluster neurons. We performed a parameter search to optimize the algorithm’s parameters—1307

epsilon (set to 0.5) and the minimum number of samples (set to 1)—and to ensure that the1308

resulting clusters are biologically meaningful (i.e., each cluster is either excitatory or inhibitory).1309

Any neuron that DBSCAN left unclustered was assigned as its own individual cluster. We set1310

sensory neurons (i.e., JO-C/E/F and antennal bristle neurons) to their respective cell types.1311

Furthermore, each right-left motor neuron pair was assigned to a different cell type. In total, we1312

obtained 104 clusters, reducing the number of node type 8-fold (from 852).1313

We additionally trained models based on the three different adjacency matrices (maximum,1314

minimum, and average), a shuffled, and the original (i.e., unprocessed) version for multiple seeds1315

(Extended Data Fig. 10C). For the shuffled matrix, we started with the symmetric adjacency1316

matrix from the maximum count approach, then randomly rearranged the post-synaptic connec-1317

tions of each neuron on one hemisphere while preserving neurotransmitter identity. This shuffled1318

matrix was then mirrored across hemispheres to maintain symmetry. For all types of adjacency1319

matrices, we used the same cell types obtained from the previously mentioned clustering process.1320

The training results revealed that the network with the minimum number of connections,1321

and thus the fewest open parameters, performed the worst (Extended Data Fig. 10C). By1322

contrast, the shuffled and maximum connection networks, which had the highest number of open1323

parameters, achieved the smallest test errors. These findings highlight the trade-off between model1324

complexity and computational efficiency. Notably, the original connectome network’s performance1325

was between the maximum and minimum connection networks (Extended Data Fig. 10C).1326

Model parameters and training1327

We adapted the open-source Python package for connectome-constrained model training51 (https:1328

//github.com/TuragaLab/flyvis, commit 056e4aa) to the grooming network and dataset. Specif-1329

ically, each neuron 0 ≤ j ≤ N is modeled as a leaky integrator neuron, where N is the number1330
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of neurons in the network, whose voltage dynamics vj(t) are governed by the following equations1331

(trainable parameters are shown in red),1332

τj v̇j(t) = −vj(t) + vrestj +
N∑
i=0

wi,jf(vi(t)) + Iextj (t) + ξ(t) (5)

where τj is membrane time constant and vrestj is resting potential, shared among neurons of the1333

same cell-type (previously defined by an unsupervised clustering algorithm). Mechanosensory1334

neurons JO-C/E/F receive an external input Iextj (i.e., sensory feedback and optogenetic stimuli)1335

as described above while for other neurons in the network external input is zero. Each neuron also1336

has an intrinsic noise ξ ∼ N (0, 0.01) and receives input from its pre-synaptic neurons i. We used1337

rectified-linear unit (ReLU) to model neurotransmitter release f(x) = max(0, x). Transformed1338

membrane potential of each pre-synaptic neuron i to post-synaptic neuron j is then weighted by1339

the synaptic connection between the two wi,j as in reference51,1340

wi,j = σi,jαiN
syn count
i,j (6)

where N syn count
i,j is the natural logarithm of the average synaptic count between cell types i to j,1341

and αi is the neurotransmitter sign that is −1 if the detected neurotransmitter type is inhibitory1342

and +1 otherwise. We assigned both GABA and Glutamate to be inhibitory117. We assigned1343

Acetylcholine and Dopamine to be excitatory. Synaptic strength σi,j is an non-negative parameter1344

and modulates the connection strength between neurons, initialized as1345

σi,j =
0.1

N syn count
i,j

(7)

Neuron parameters were initialized within physiologically plausible ranges. Resting potential was1346

drawn from a normal distribution vrestj ∼ N (µ = 40mV, σ = 5mV), clamped to a minimum of1347

0mV to prevent excessive positive bias in neurons. The membrane time constant was uniformly1348

initialized to 30ms for all neurons and constrained to remain within the range [0, 150ms].1349

To transform motor neuron activity into joint kinematics, we designed two Multi Layer Per-1350

ceptrons (MLPs) (Table 5) by using built-in PyTorch functions. Decoders are used to emulate1351

the nonlinearities arising from the musculoskeletal properties of antennal and neck pitch joints.1352

We choose a feedforward network, rather than a recurrent neural network, to limit the capacity1353

of decoder. In particular, there are 5 pairs of antennal motor neurons and 4 pairs of neck pitch1354

motor neurons in the brain. left and right antennal MN activities were passed separately through1355

the same antenna decoder, assuming that the left and right antennal muscles have identical prop-1356

erties. For the neck pitch motor neurons, both left and right activities were passed through a1357

single neck decoder. In total, we had 3 output traces, obtained as follows:1358

ypred = Decoder(vmn
i (t)), i ∈ {1, 2, ..., Nmn} (8)

where vmn
i (t) denotes motor neuron voltage values, and Nmn is the number of motor neurons. The1359

model parameters are optimized through Backpropagation Through Time (BPTT)67 to minimize1360

Table 5: Antennal and neck motor decoder parameters.

Decoder Input Hidden unit Hidden layer Output Drop-out Activation function

Antenna 5 10 1 1 0.2 hard tanh (min=0, max=5)
Neck 8 16 1 1 0.25 hard tanh (min=0, max=5)
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the loss between the decoder output and measured kinematics for every output trace, as described1361

below:1362

L = LMSE + Lρ (9)

LMSE(ypred,ytrue) =
1

T

T∑
t=1

∥ypred,t − ytrue,t∥2 (10)

Lρ(ypred,ytrue) = 1− 1

T

T∑
t=1

(ypred,t − ȳpred) · (ytrue,t − ȳtrue)

∥ypred,t − ȳpred∥2∥ytrue,t − ȳtrue∥2
(11)

where T is the number of time points, ȳpred and ȳtrue are the mean of ypred and ytrue, respectively.1363

LMSE and Lρ denote mean-squared-error and correlation losses.1364

Our connectome-constrained brain model had Ncell type ×Nneuron param = 104× 2 = 208 open1365

parameters for neuronal dynamics and 624 (number of unique connections between cell types) open1366

parameters for weights, giving a total of 832 parameters. We used the optimizer AMSGrad118, a1367

variance of Adam optimizer with a learning rate of 10−4 and batch size of 16 over 5,000 iterations.1368

The models were trained using NVIDIA Hardware (GeForce RTX 2080, GeForce RTX4080, and1369

V100). Each model took about 3-6 days to complete training.1370

Computational neural activation and silencing experiments1371

In our activation screen, we simultaneously delivered bilaterally symmetric input (left: 1.5, right:1372

1.5) to the JO-F neurons and unilateral input (left: 10, right: 0) to each neuron in the network1373

for 2 s. The goal of this experiment was to identify neurons whose activation was sufficient to1374

convert bilateral grooming into unilateral grooming.1375

In our silencing experiment, we bilaterally silenced neurons by setting all of their post-synaptic1376

connections to zero. An bilaterally asymmetric step input (left: 3, right: 5) was then given to1377

JO-F neurons. Here the objective was to identify neurons whose silencing disrupts unilateral1378

aMN4 responses.1379

In both experiments, the aMN4 response was quantified using our response metric (Fig. 5E)1380

after denoising single neural traces with a Savitzky–Golay filter (window size: 11, degree: 3).1381

Additionally, global network activity was evaluated after silencing neurons by comparing intact1382

network activity to post-silencing activity. Neurons with mean activity more than five times the1383

intact network activity during stimulation were labeled as ‘highly active.’ The total number of1384

highly active neurons was then counted. Note that, this metric did not account for neurons that1385

decreased global network activity after silencing.1386

All analyses were performed at the cluster (population) level by averaging the activity of all1387

neurons within each cluster. Neural activity was passed through a ReLU activation function1388

before analysis.1389

Identifying network motifs1390

Neurons were identified as important in our activation screen if their median USI metric (across1391

three models) was either greater than 0.1 or less than -0.1. These neurons were categorized based1392

on their effect of driving either ipsilateral aMN4 or contralateral aMN4.1393

To compute cluster weights from the single-neuron adjacency matrix, we summed the presy-1394

naptic and postsynaptic connections of all neurons within each cluster. Since each cluster is1395

exclusively inhibitory or excitatory, the sign of the summed weights was preserved during this1396

operation.1397
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When visualizing network motifs, we included neurons that had both incoming and outgoing1398

synapses within the motif, except for motor neurons. To simplify the network diagram, connection1399

weights below the 1st percentile of all weights in the network were omitted from the visualization.1400

Statistical analysis1401

All statistical analyses were conducted using Python v3.10 with SciPy v1.10.1107. Unless otherwise1402

specified, we employed the Mann-Whitney U test, a non-parametric method that does not assume1403

any particular underlying probability distribution of the samples.1404

In Fig. 2C,F,I and Extended Data Fig. 4C, we compared force or contact read-outs across1405

different gain values (modified versus intact) and between two leg segments (tibia versus tarsus)1406

using a two-sided Mann-Whitney U test. Specifically, each trial is summarized with a single value1407

using a metric, and distributions of these trial values were used for comparison. Each gain value1408

was compared to the natural behavior (gain = 1 or gain = 60°), using the natural distribution1409

repeatedly. To account for multiple comparisons, we applied the Simes–Hochberg false discovery1410

rate correction, with a significance threshold of α = 0.05119.1411

In Fig. 3E,G,I,K,M,O, we performed within-fly comparisons between two phenotypes (uniR1412

versus uniL kinematics; Fig. 3E,G,I bottom left) and between experimental conditions (intact1413

versus experimental animals; Fig. 3E,G,I,K,M,O bottom right). We summarized data from1414

each fly by taking the median of all trials. For phenotype comparisons, we used a one-sided1415

Mann-Whitney U test, with the alternative hypothesis selected based on the specific kinematic1416

variable. Comparisons between intact and experimental animals were made using a two-sided1417

Mann-Whitney U test.1418

In all figures showing statistical tests, significance levels are indicated as follows: ***: P <1419

0.001, **: P < 0.01, *: P < 0.05 and not significant (NS): P ≥ 0.05. Sample sizes and P values1420

are described in the respective figure legends.1421

Data availability1422

Data are available at:1423

https://dataverse.harvard.edu/dataverse/ozdil_2024_antennal_grooming1424

This repository includes behavioral recordings used in Fig. 1, Fig. 3, Extended Data Fig. 1,1425

Extended Data Fig. 2, Extended Data Fig. 3, Extended Data Fig. 6; trained DeepLabCut networks1426

to perform 2D pose estimation; a table representing the antennal grooming network used in Fig. 4.1427

Raw behavioral videos are available upon request from the authors and are omitted here due to1428

storage limitations.1429

Code availability1430

Code is available at:1431

https://github.com/NeLy-EPFL/antennal-grooming1432

1433
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Extended data1434

1435

Extended Data Fig. 1: Characterization of antennal grooming. (A) Confocal image showing
nervous system expression for the aJO-GAL4-1 40 driver line used to optogenetically-elicit antennal
grooming. GFP (green) and nc82 (purple) are stained. Scale bar is 100 µm. (B-C) Boxen plots showing
the distribution of kinematic variables during (B) optogenetic- or (C) air puff-elicited antennal grooming.
These include antennal pitch (first row), head pitch (second row), tibia-tarsus joint position (third
row), and head roll (bottom row). Data are color-coded by grooming class. In (B), light and dark
shades represent the left and right antennae, respectively. For all boxen plots, the center line represents
the median, and each successive box denotes a halved quantile range of the data. Data are taken from
n=5 flies. (D) Squared Pearson’s correlation (ρ2) between joint angles (rows) as a function of antennal
grooming class (columns). Darker boxes indicate higher correlation. (E) Transition matrix between
antennal grooming subtypes. Self-transitions are excluded and row values are normalized to sum to
one. (F) Explained variance for the first five principal components. Bar graph shows the individual
contribution of each principal component to the total variance. Line plot shows the cumulative explained
variance. Data are combined from panels (B-C) (n=5 flies), and (D-E) (n=10 flies).
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1451

Extended Data Fig. 2: Comparison of optogenetic- versus air puff-elicited antennal groom-
ing kinematics. (A,C, left) 3D visualizations illustrating the fly’s orientation in neighboring 2D
histograms. Key points shown in panel A-D occupancy histograms are indicated (black circles). His-
tograms display the position occupancy of the left and right: (A) antennal bases and tips, (B) the
coxa-trochanter joints, (C) femur-tibia joints, and (D) tibia-tarsus joints. (A-D) From top to bottom,
2D occupancy histograms show body segment positions in the x-y (top view), x-z (side view), and y-z
(front view) planes. From left to right, the histograms illustrate optogenetic- (blue) or air puff-elicited
(red) antennal grooming kinematics, as well as the overlap between the two. Each 2D histogram rep-
resents the frequency of a body part’s presence in each spatial location. Darker colors indicate higher
occupancy. Overlaps illustrate an intersection between occupied areas. Indicated is the precise percent
of overlap (right). Data are taken from n=5 flies.

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

14621463
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1464

Extended Data Fig. 3: Comparison of optogenetically-elicited antennal grooming kinemat-
ics in intact versus foreleg amputee animals. (left) 3D visualizations illustrate the fly’s orientation
in neighboring 2D histograms. Key points shown in occupancy histograms are indicated (arrows).(right)
Histograms display the positional occupancy of the left and right antennal base and tip key points. From
top to bottom, 2D occupancy histograms show body segment positions in the x-y (top view), x-z (side
view), and y-z (front view) planes. From left to right, the histograms illustrate intact (blue) or leg am-
putee (red) antennal grooming kinematics, as well as the overlap between the two. Each 2D histogram
represents the frequency of a body part’s presence in each spatial location. Darker colors indicate higher
occupancy. Overlaps illustrate an intersection between occupied areas. Indicated is the precise percent
of overlap (right). Data are taken from n=7 flies.
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1476

Extended Data Fig. 4: Dataset used for the kinematic replay and quantification of antennal
grooming contact forces. (A) Violin plots showing the distribution of head and antennal movements
during bilateral grooming. These data were used to investigate the effect of downward head pitch in
kinematic replay experiments. (B) Time series illustrating the contact forces exerted by the left and
right foreleg tibial (orange) or tarsal (blue) segments with their ipsilateral antennae at head pitch gains
of 1 (top) or 0 (bottom). (C) Box plots summarizing the distribution of contact forces between tibial
and tarsal leg segments and the antennae as a function of head pitch gain. Box plots show the median of
each trial’s non-zero contact forces. Statistics compare tibial and tarsal contact force distributions at a
single gain value using a two-sided Mann-Whitney U test. (D) Violin plots showing the distribution of
head and antennal movements during unilateral antennal grooming. These data were used to study the
impact of head roll and antennal pitch suppression. Significance levels are as follows: ***: P < 0.001,
**: P < 0.01, *: P < 0.05 and not significant (NS): P ≥ 0.05.
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1490

Extended Data Fig. 5: Diagrams of proprioceptive sensory feedback control models. Each
colored block represents a motor module consisting of motor neurons and their premotor partners driving
a particular body part degree of freedom. For each model, all configurations are shown. In cascading
coordination, proprioceptive sensory feedback from the first moving body part drives movements of the
following body parts. In additive coordination, feedback from the first two moving body parts jointly drive
movements of the third. In diverging coordination, feedback from one body part drives the movements
of the other two.
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1499

Extended Data Fig. 6: Spatial distribution of foreleg keypoint positions in intact ver-
sus head-fixed animals during grooming. (A) 3D visualizations illustrate the fly’s orientation in
neighboring 2D histograms. Key points shown in panel B-C occupancy histograms are indicated (black
circles). Histograms display the positional occupancy of the left and right (B) coxa-trochanter joints
and (C) tibia-tarsus joints. From top to bottom, 2D occupancy histograms show body segment positions
in the x-y (top view), x-z (side view), and y-z (front view) planes. From left to right, the histograms
illustrate intact (blue) or head-fixed (red) antennal grooming kinematics, as well as the overlap between
the two. Each 2D histogram represents the frequency of a body part’s presence in each spatial location.
Darker colors indicate higher occupancy. Overlaps illustrate the intersection between occupied areas.
Indicated is the percent of overlap (right). Data are from n=9 flies.
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Özdil et al. 45 | 64



1511

Extended Data Fig. 7: Construction and characterization of the connectome-derived an-
tennal grooming network in the brain and VNC.
See Figure Legend on next page.
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Extended Data Fig. 7: Construction and characterization of the connectome-derived anten-
nal grooming network in the brain and VNC. (A) To construct our antennal grooming network,
we identified all neurons that are monosynaptically connected (light pink circles) to previously identified
antennal grooming neurons (dark gray circles) in the brain. Neurons with both presynaptic and post-
synaptic connections exceeding a threshold (green connections) were included in this new network. (B)
The number of interneurons and descending neurons included as a function of the synaptic percentage
threshold. The selected thresholds for network construction are indicated (red asterisks). (C) Percentage
of incoming (blue) and outgoing (black) synapses for newly included interneurons (top) and descending
neurons (bottom) using the selected threshold. No outgoing synapse threshold was applied to descending
neurons because they often lack substantial outputs (i.e., axon terminals) in the brain. (D) In- versus
out-degree for neurons in our constructed antennal grooming network. Neurons are color-coded by type.
Inhibitory neurons are indicated (encircled in black). Note the logarithmic scales. (E) All neurons
ordered by their signal flow score. The signal flow axis is divided into nine equal intervals representing
layers from input (left) to output (right). Each circle represents an individual neuron except for sensory
neurons (JO-C/E/F and ant. bristles), which are grouped based on their cell type. (F) Heatmap illus-
trating the projections of central neurons onto various premotor types, including antennal, neck, foreleg,
and shared premotor neurons. Dark blue squares indicate that the central neuron is a presynaptic part-
ner to the premotor neuron in the corresponding row. (G) Venn diagram illustrating the classification
of descending neurons in the brain antennal grooming network (purple) as being also either VNC foreleg
premotor (orange), or VNC neck premotor (blue). Note that no descending neurons are classified as
both foreleg and neck premotor. (H) Pie charts showing the percentage of neuron types in each premo-
tor neuron group in the VNC for T1 leg premotor (left), neck premotor (center), and shared premotor
neurons (right). The proportion of descending neurons is highest among shared premotor neurons.
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1540

Extended Data Fig. 8: Connectivity of different neuron types in the antennal grooming
network. Illustrated are connections to other network neurons by (A) Johnston’s Organ sensory inputs,
(B) central neurons, (C) shared premotor neurons, (D) antennal premotor neurons, (E) neck premotor
neurons, (F) leg premotor neurons, (G) antennal motor neurons, and (H) neck motor neurons. High-
lighted in each panel are the neurons of interest. Neurotransmitter types are color coded: inhibitory
(blue; GABAergic or glutamatergic), excitatory (red; cholinergic), and other neurotransmitter (grey;
e.g., dopaminergic). Line widths are proportional to synaptic count.
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1549

Extended Data Fig. 9: Connectivity between neuron groups in real and randomly shuf-
fled grooming networks. (A) Graph representations of connectivity between neuron groups in real
and randomized networks. Line widths indicate the percentage of connectivity between groups, with
connections below 5% of the maximum strength omitted. The far left shows the real connectivity. The
remaining three are examples of randomly shuffled networks. (B) Heatmap displaying input contribu-
tions between neuron groups. The color scale is normalized within each heatmap. Heatmaps are each
taken from the corresponding graph representation (above) in panel A. (C) Percentage of connections in
real (red dashed line) and randomized (histogram) networks. Randomized network distributions that are
significantly different from the real network are colored light blue; non-significant ones are colored gray.
Significance levels are as follows: ***: percentile 1 or 99; **: percentile 2.5 or 97.5; *: percentile 5
or 95; and not significant (NS): otherwise. (B,C) Anticipated connections for each hypothetical model
are outlined by colored boxes.
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1563

Extended Data Fig. 10: Training and analysis of connectome-derived artificial neural
networks. (A) Example experimental trials showing an input-output pair from the training dataset
with a 5 Hz pulsatile input (top) and a 3 s step input (bottom). Optogenetic stimuli delivered to
JO-F neurons mirror those used in real experiments. In addition to this optogenetic input, we also
provided JO-CE neurons with fictive sensory feedback. To do this, we processed the antennal pitch motor
output to separate upward (JO-C) and downward (JO-E) antennal movements, and then added a 40 ms
sensorimotor delay. The unprocessed motor output served as the decoder’s output. (B) We symmetrized
the network’s adjacency matrix by setting the connections between the two hemispheres to the maximum
observed value. This was applied separately for ipsilateral (blue) and contralateral (orange) connections.
(C) Test errors for connectome-derived neural network models trained using various adjacency matrices
to evaluate the effects of different connectivity structures on network performance. Max adjacency
represents fully symmetrized networks, where connections between ipsilateral and contralateral neuron
pairs were set to their maximum observed values (as shown in panel B). Original adjacency refers to the
non-symmetrized, original connectivity matrix. Min adjacency denotes fully symmetrized networks, but
with connections set to their minimum observed values. Shuffled max adjacency represents symmetrized
networks where neuronal connections were randomized to disrupt anatomical specificity while preserving
neurotransmitter identity. Untrained max adjacency refers to symmetrized networks with maximum
connectivity values but without training. The number of models trained for each condition is indicated
next to each box plot. Box plots show the median, quartiles, and whiskers extending up to 1.5 times
the interquartile range (IQR). Lower test errors indicate better performance, with symmetrized networks
generally outperforming original or sparsified counterparts. (D) Activities of antennal brain interneurons
(aBNs), descending neurons (aDNs), and motor neurons (aMNs) (left/magenta, right/green) from model
11 when the left JO-F input is slightly higher than the right one. aMN4 is indicated (red outline). Gray
areas indicate the JO-F stimulation period. Voltage traces are processed through an activation function
(rectified linear unit or ReLU).
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1590

Extended Data Fig. 11: The connectivity of antennal MN4, activity dynamics of neuron
clusters in the intact network, and activity dynamics in the presynaptic inhibition motif.
See Figure Legend on next page.
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Extended Data Fig. 11: The connectivity of antennal MN4, activity dynamics of neuron
clusters in the intact network, and activity dynamics in the presynaptic inhibition motif.
(A) Left (magenta) and right (green) aMN4 activity traces for different JO-F input pairs across models
10, 13, and 23. The JO-F stimulation period is shaded in gray. During asymmetric JO-F input, the
contralateral aMN4 responds, while the ipsilateral aMN4 shows diminished or subthreshold activity (i.e.,
below zero). (B) Activities of aMN4 on the left or right side of the brain. These are shown as a function
of the input current magnitudes to the left and right JO-F in the intact network. Values represent the
difference between the area under the curve of left and that of right motor neuron activity (magenta
for left MN-dominant, green for right MN-dominant). Solid lines mark positive intervals, and dashed
lines mark negative intervals, in increments of 0.1. Neither motor neuron dominates along and around
the diagonal (white). (C) Connectivity of aMN4. Neurons outlined in dark blue did not significantly
affect aMN4 activity when unilaterally activated. (D) Responses of neurons within motifs (Fig. 6H-I)
to asymmetric JO-F input (left>right) for models 11, 16, and 22. Each column represents one neuron,
grouped by cluster (horizontal lines and cluster names). Neural responses were quantified using the USI
response metric. Grey squares indicate no activity in both neurons (USI = 0/0). Magenta and green
squares denote ipsilateral and contralateral responses, respectively, with darker shades indicating fully
unilateral activity. (E) Simulated neural dynamics of neurons/clusters in the recurrent excitation network
motif (Fig. 6H). Each row corresponds to a unilaterally (left) activated neuron (boxed in red) during
bilaterally symmetric JO-F input. Each column shows activity of neurons (left/magenta; right/green).
JO-F and neuron stimulation periods are shaded in gray. (F) Diagram illustrating connections between
the recurrent excitation motif and the inhibitory neurons DN52 and c62. Dashed vertical line separates
the left and right hemispheres. (G) Diagram illustrating the presynaptic inhibition motif between
inhibitory clusters and JO-F neurons. Neurons from only one hemisphere are shown. (C,F,G) Red and
blue lines represent excitatory and inhibitory connections, respectively, with line thickness proportional to
the trained weights from model 22. (H) Simulated neural dynamics of neurons/clusters in the presynaptic
inhibition network motif (panel G). Each row corresponds to a unilaterally (left) activated neuron (boxed
in red) during bilaterally symmetric JO-F input. Each column shows activity of neurons (left/magenta;
right/green). JO-F and neuron stimulation periods are shaded in gray. (A,E,H) Voltage traces are
processed through an activation function (rectified linear unit or ReLU). For clusters containing multiple
neuron pairs, average neural activity is shown.
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1626

Extended Data Fig. 12: Neural responses of models trained with the original (non-
symmetrized) adjacency matrix. (A) Responses of antennal brain interneurons (aBNs), descending
neurons (aDNs), and motor neurons (aMNs) to bilaterally symmetric JO-F input (left = right) in trained
models using (left) the original, non-symmetrized connectome network (n = 10) or (right) the sym-
metrized connectome network (n = 30). Neural responses were quantified using the USI response metric.
Grey squares indicate zero neural activity in both neurons (USI = 0/0). Magenta and green squares
represent neurons responding more to stimulation of their ipsilateral or contralateral JO-F, respectively.
Darker colors indicate that only one neuron is active. (B) Response types of motor neurons for bilater-
ally symmetric JO-F input across models using the original non-symmetric connectome network (blue)
or the symmetrized connectome network (black) as adjacency matrices. Each dot represents a model
(corresponding to a square in panel A). Box plots display medians and quartiles, while whiskers extend
to the full distribution, excluding outliers beyond 1.5 times the interquartile range (IQR).
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Supplementary Information Files1640

Supplementary Information File: Exact p-values for statistical tests performed in this study1641

(Ref. Fig. 2, Fig. 3, and Extended Data Fig. 4). Excel file containing FlyWire IDs, names,1642

modules. Clusters of neurons that constitute the antennal grooming network (Ref. Fig. 4.)1643

Link to Supporting Information File1644

1645

Supplementary Videos1646

Supplementary Video 1: Behavioral recordings, 3D pose estimation, inverse kine-1647

matics, and joint angles during antennal grooming. Experimental recordings (left, top1648

and middle rows) were used to estimate the fly’s 3D pose (left, bottom row). Inverse kinematics1649

calculations allowed us to derive joint angles for the head and antennae (right, top row) as well as1650

for the forelegs (right, second and third rows). Indicated are the onset and offset of optogenetic1651

stimulation (red circles in camera images, red vertical lines on plots). Here and elsewhere, the1652

fly genotype is 20xUAS-CsChrimson; + ; GMR60E02-GAL4. Video and data are shown at 0.5x1653

real-time.1654

Link to Supplementary Video 11655

1656

Supplementary Video 2: Behavioral recordings, 3D pose estimation, inverse kine-1657

matics, and kinematic replay in a biomechanical model during antennal grooming.1658

Shown is the original video (left), 3D pose estimation (middle, solid lines), inverse kinematics1659

(middle, dashed lines), and kinematic replay in NeuroMechFly, a biomechanical fly simulation1660

(right). Video and data are shown at 0.25x real-time.1661

Link to Supplementary Video 21662

1663

Supplementary Video 3: Behavioral classification of optogenetically-elicited antennal1664

grooming. Videos of four optogenetic stimulation trials for six flies. Overlaid are seven behavior1665

classification labels: ‘bilateral’, unilateral tripartite (‘unilateral t right, or left’), partial unilateral1666

non-tripartite (‘unilateral nt right, or left’), non-classified (‘nc’), and ‘background’. Indicated are1667

the onset and offset of optogenetic stimulation (red circles in camera images). Video and data are1668

shown at 0.5x real-time.1669

Link to Supplementary Video 31670

1671

Supplementary Video 4: Comparison of air puff- versus optogenetic stimulation-1672

elicited antennal grooming. Videos of two air puff (top) and optogenetic stimulation (bottom)1673

trials for three individual flies. Each fly is numbered. Glass capillary for air puff stimulation is1674

on the left. Indicated are the onset and offset of the air puff (blue circles in camera images) or1675

optogenetic stimulus (red circles in camera images). Video and data are shown at 0.5x real-time.1676

Link to Supplementary Video 41677

1678

Supplementary Video 5: Kinematic replay of intact versus computationally perturbed1679

antennal grooming. Biomechanical simulation kinematic replay in NeuroMechFly of intact1680

(top, ‘Gain=1’), or perturbed (bottom, ‘Gain=0’) inverse kinematics-derived antennal grooming.1681

Grooming subtypes are bilateral (left) or unilateral (middle and right). In each column one1682

degree of freedom is perturbed: head pitch (left), head roll (middle), or antennal pitch (right).1683

For head pitch and head roll, Gain=1 indicates the original joint angles, while Gain=0 indicates1684
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no movement. For antennal pitch, Gain=1 indicates 60°upward pitch and Gain=0 indicates a1685

resting pose (no pitch) at 10°. Data are replayed at 0.1x real-time.1686

Link to Supplementary Video 51687

1688

Supplementary Video 6: Behavioral recordings of optogenetically-elicited antennal1689

grooming in flies before versus after head fixation. Videos of two optogenetic stimulation1690

trials for three individual flies either before (top) or after (bottom) head fixation. Each fly is1691

numbered. Indicated are the onset and offset of optogenetic stimulation (red circles in camera1692

images). Video and data are shown at 0.5x real-time.1693

Link to Supplementary Video 61694

1695

Supplementary Video 7: Behavioral recordings of optogenetically-elicited antennal1696

grooming in flies before versus after foreleg amputation. Videos of two optogenetic1697

stimulation trials for three individual flies either before (top) or after (bottom) leg amputation.1698

Each fly is numbered. Indicated are the onset and offset of optogenetic stimulation (red circles in1699

camera images). Video and data are shown at 0.5x real-time.1700

Link to Supplementary Video 71701

1702

Supplementary Video 8: Behavioral recordings of optogenetically-elicited antennal1703

grooming in flies before versus after amputation of their antennae. Videos of two opto-1704

genetic stimulation trials for three individual flies either before (top) or after (bottom) amputation1705

of their antennae. Each fly is numbered. Indicated are the onset and offset of optogenetic stimu-1706

lation (red circles in camera images). Video and data are shown at 0.5x real-time.1707

Link to Supplementary Video 81708

1709

Supplementary Video 9: Behavioral recordings of optogenetically-elicited antennal1710

grooming in flies before perturbation, after amputation of their forelegs, and then1711

also following head immobilization. Videos of two optogenetic stimulation trials for three1712

individual flies either before any perturbation (top), after amputation of their forelegs (middle),1713

and after head immobilization as well (bottom). Each fly is numbered. Indicated are the onset1714

and offset of optogenetic stimulation (red circles in camera images). Video and data are shown1715

at 0.5x real-time.1716

Link to Supplementary Video 91717

1718

Supplementary Video 10: Behavioral recordings of optogenetically-elicited antennal1719

grooming in flies before perturbation, after amputation of their antennae, and then1720

also following foreleg amputation. Videos of two optogenetic stimulation trials for three1721

individual flies either before any perturbation (top), after amputation of their antennae (middle),1722

and after amputation of their forelegs as well (bottom). Each fly is numbered. Indicated are the1723

onset and offset of optogenetic stimulation (red circles in camera images). Video and data are1724

shown at 0.5x real-time.1725

Link to Supplementary Video 101726

1727

Supplementary Video 11: Behavioral recordings of optogenetically-elicited antennal1728

grooming in flies before perturbation, after amputation of their antennae, and then1729

also following head immobilization. Videos of two optogenetic stimulation trials for three1730

individual flies either before any perturbation (top), after amputation of their antennae (middle),1731

and after head immobilization as well (bottom). Each fly is numbered. Indicated are the onset1732

and offset of optogenetic stimulation (red circles in camera images). Video and data are shown1733
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at 0.5x real-time.1734

Link to Supplementary Video 111735

1736

Supplementary Video 12: Animation of network dynamics in intact, WED-, and c6-1737

silenced networks for models 11, 16, and 22. Network dynamics in (left) intact, (middle)1738

WED-silenced, and (right) c6-silenced networks in response to bilaterally symmetric JO-F input.1739

Shown are networks from models (top) 11, (center) 16, and (bottom) 22 are shown. JO-F stimu-1740

lation begins at 400ms and ends at 2400ms. Circles represent clusters. Indicated are inhibitory1741

clusters (black outline). Node colors are proportional to non-normalized neural activity: red in-1742

dicates depolarization, blue indicates hyperpolarization, and white indicates neurons at rest. For1743

clusters containing multiple neurons, the average activity is displayed. The left and right halves1744

of each panel correspond to the left and right hemispheres of the network. The title shows time1745

points.1746

Link to Supplementary Video 121747

1748

Supplementary Video 13: Animation of network dynamics in intact, unperturbed1749

models 11, 16, and 22. Intact network dynamics in response to (left) bilaterally symmetric, or1750

(right) asymmetric JO-F (right > left) input. Shown are dynamics in models (top) 11, (center)1751

16, and (bottom) 22 are shown. JO-F stimulation begins at 400ms and ends at 2400ms. Circles1752

represent clusters. Indicated are inhibitory clusters (black outline). Node colors are proportional1753

to non-normalized neural activity: red indicates depolarization, blue indicates hyperpolarization,1754

and white indicates neurons at rest. For clusters containing multiple neurons, the average activity1755

is displayed. The left and right halves of each panel correspond to the left and right hemispheres1756

of the network. The title shows time points.1757

Link to Supplementary Video 131758
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